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Introduction

Simulation and errors
Input-data uncertainty

Simulation framework.

Basic ingredients

@ Selection of a mathematical model :
retain essential physical processes.

@ Selection of a numerical method :
to solve the model equations.

@ Define all input-data needed :
select a specific system in the class spanned by the model.

v
Simulation errors

@ Model errors : physical approximations and simplifications.

@ Numerical errors : discretization, approximate solvers, finite arithmetics,

@ Input-data error : boundary/initial conditions, model constants and
parameters, external forcings, ...
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Introduction

Sources of data uncertainty

@ Inherent variability (e.g. industrial processes).

@ Epistemic uncertainty (e.g. model constants).
@ May not be fully reducible, even theoretically.

Probabilistic framework

@ Define an abstract probability space (©, .4, du).

@ Consider input-data D as random quantity : D(6), 6 € ©.

@ Simulation output S is random and on (O, A, du).

@ Data D and simulation output S are dependent random quantities
(through the mathematical model M) :

M(S(6),D(8)) =0, Voeco.
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Introduction

Simulation and errors
Input-data uncertainty

Propagation of data uncertainty

Data density Solution density

M(S,D)=0

pt
pt

Data value Solution value

@ Variability in model output : numerical error bars.
@ Assessment of predictability.
@ Support decision making process.

@ What type of information (abstract quantities, confidence intervals, density
estimations, structure of dependencies, ...) one needs ?
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Polynomial Chaos expansions
A uQ

Spectral UQ

Polynomial Chaos expansions (Wiener, 1938]
Any well behaved RV U(#) (e.g. 2nd-order one) defined on (©, A, du) has a
convergent expansion of the form :

Uo) = wlo+ > uyT1(&0) +> > iy ,2(&,(0),£,(0))
=1 =1 =1

+ ZZZUI1,i2,i3r3(§f1 (9)7512(0)7613(0)) + ...

i1=1 p=1 iy=1

@ {&41,&, ...} rindependent normalized Gaussian RVs.
@ [, polynomials with degree p, orthogonal to g, Vg < p.
@ Convergence in the mean square sense (Cameron & Martin, 1947].

Le Maitre Galerkin Method for Uncertain Conservation Laws



Spectral UQ

Polynomial Chaos expansions (Wiener, 1938]
Truncated PC expansion at order No and using N RVs :

(N + No)!

P
U) = Y ukVk(&(6)), €={&,....&), P= NINol

k=0

@ {Uk}k=o,...p : deterministic expansion coefficients,

@ {Wi}k=o,. p: L random polynomials wrt the inner product involving the
density of & :

E{WW)} = (W), W) = /e Wi (£(0))V/(£(60))duu(0)
/ Vi ()V/(E)P(E)IE = Sy (W, W) -

_g2

@ Gaussian RVs : p(¢) =[], w = Hermite polynomials
(Wiener-Hermite expansions)

@ {Wy,...,Up} is an orthogonal basis of S ¢ L2(RN, p(¢)).
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pansions
|UQ

Spectral UQ

Polynomial Chaos expansions (Wiener, 1938]
Truncated PC expansion : U(0) ~ Sh_o UV (£(9)).

@ Convention Vg = 1 : mean mode.
@ Expectation of U :

P

E{U} = /@ U(O)du(e) ~ 3 ue / Wk(€)p(€)dE = wo.

k=0
@ Variance of U :
P
VIU =E{UP} —E{UP ~ > ik (Wi, W)
k=1
@ Extension to random vectors & stochastic processes :

U1 P U4

@xty=y | (x, 1) Wk(£(0)).

Um k=0 Unm .
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Spectral UQ

Generalized PC expansion (Xiu & Karniadakis, 2002]

Distribution of £ | Polynomial familly
Gaussian Hermite
Uniform Legendre
Exponential Laguerre
(B-distribution Jacobi

Also : discrete RVs (Poisson process).

U(9) ~ h_o tWk(£(6))
where W : classical (or product of) polynomials :
spectral expansions
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Polynomial Chaos expansions
Application uQ
Solution meth

Spectral UQ

Instead of a spectral expansion over = one can use Piecewise polynomial
expansion on a mesh X of =

e == USEGZ =sk, =se N =g = 0 for SE #* SE’
o 5 ={UeL*= pe), UlE € Zo) € Ay (Zse) }
U(6) ~ Sy tVi(£(0)) |

@ W, are orthogonal with :
@ Support of Wy limited to an element : Stochastic multi-element method  (pes

et al., 2001], [Wang and Karniadakis, 2005]
Fully decouple the approximation problems over different elements

@ Hierarchical orthogonal functions W : Stochastic Multiwavelet method (o1
et al., 2004, 2006, 2009]

Coupled problems, well suited for adaptive strategy (MRA)
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Polynomial Chao:
Application to spectral UQ
Solution methods

Spectral UQ

[Ghanem & Spanos, 1991]

Input-data parametrization

Parametrization of D using N < oo independent RVs with prescribed
distribution p(¢) :

D(6) ~ D(£(D)), €= (&1,....&) €=

@ Iso-probabilistic transformations of RVs,
@ Karhunen-Loéeve expansion : D(x, #) stochastic field/process,

@ Indentification (e.g. Bayesian).

Solution expansion
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Spectral UQ

Polynomial
A

to spectral UQ
Solution methods

[Ghanem & Spanos, 1991]

Input-data parametrization

We assume that for a.e. ¢ € =, the problem M(S, D(£)) =
@ is well-posed,
@ has a unique solution

and that

‘ the random solution S(¢) € L3(=, pe) ‘ :

E{s} = / S(£(6))du(6) = / S(£)p(€)d < +oo.

Solution expansion
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Polynomial Chao: ansions
Application to spectral UQ
Solution methods

Spectral UQ

[Ghanem & Spanos, 1991]

Input-data parametrization

Solution expansion

Let {Wo, Wy, ...} be a basis of L?(=, p) then

S(€) = skVk(€).

@ Knowledge of the spectral coefficients si fully determine the random
solution.

@ Makes explicit the dependence between D(&) and S(&).
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Polynomial Chaos expansions
Application to spectral UQ
Solution methods

Spectral UQ

[Ghanem & Spanos, 1991]

Input-data parametrization

Solution expansion

Let {Wo, Wy, ...} be a basis of L?(=, p) then

)= skW(é)

@ Knowledge of the spectral coefficients si fully determine the random
solution.

@ Makes explicit the dependence between D(&) and S(&).

@ Need efficient procedure(s) to compute the s.
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Polynom
Appli

Spectral UQ

Galerkin projection Method of weighted residual
@ Introduce truncated expansions in model equations
® Require residual to be L to the stochastic subspace S*

P
<M (Z sV (8), D(€)> ,\Um(£)> =0 form=0,...,P.
k=0

’ Set of P + 1 coupled problems. ‘

@ Implicitly account for modes’ @ Requires adaptation of
coupling deterministic solvers
@ Often inherit properties of the @ Treatment of non-linearities.

deterministic model
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Spectral UQ

Solution methods
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Stochastic hyperbolic systems

PhD work of Julie Tryoen

with Alexandre Ern (Cermics, Univ. Paris-Est)
and Michael Ndjinga (CEA, Saclay)
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Stochastic hyperbolic systems

Hyperbolic systems :

M v fw)=0, u(x.t=0)=u(x), BCs

< ue Ay C R™ (conservative variables)

= f: Ay — R™ (flux function)

= if Vyf € R™ ™ is R-diagonalizable on Ay = hyperbolic

= u can develop shocks / discontinuities in finite time
Classical discretization (Finite Volume in 1-space dimension)

ut! —uf N f(u?,ufyy) — f(ul_y, up)

At AX =0

where u}! = [,, u(x, t;)dx and 7(,) is the numerical flux function (having
had-hoc properties).
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Hyperbolic systems

Stochastic hyperbolic systems

Uncertain hyperbolic problems :
1 Uncertain

a with £(0) = {&1(0), ... &(0)} a set of N iid random
variables with uniform distribution on = = [0, 1]V

[ Stochastic Hyperbolic Problem
ou(x,t,£)

g tV-FU§ =0, Uxt=0¢)= UV(x,¢) (as.)

Hypotheses
® U(x,t¢) e Ay and VyF(U;¢) is R-diagonalizable a.s.
® all random quantities have finite variance.

The solution is sought in S := span {W, ..., Vp} C Ly(Z), where V¥, are
orthonormal polynomials in & with degree < No : (W, Vg) = dq,3.
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n projection

Stochastic hyperbolic systems Approximal

Galerkin problem :
0 Since U € L?(Z) it has a convergent expansion :

U(x,1,€) =D Ua(x,H)Wa(€)

O We denote U” the approximation of U in SP
[ Stochastic Galerkin projection of the hyperbolic problem : for
a=0,...,P
ou.(x,t)
ot
fo(Uo,...,up) = (F(U";€),V.)

Ua(x,t =0) = <U°(x),\l/a>

+ V- fa(Uo,...,up) =0

(P + 1)-coupled problems for the solution modes
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. I Galel projection
Stochastic hyperbolic systems Approxir

Galerkin problem : (system form)

o Up fo(llo,...,llp)
o +V- : —0
up fp(Uo,...,UP)
ou
SV F) =0

QUue Rmx(P-H)

arF - Rmx(P-H) s Rmx(P-H)

1 Is the Galerkin problem hyperbolic ?
3 (VuF R-diagonalizable ?)

1 What is the admissible domain Ay, ?
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Galel projection

Stochastic hyperbolic systems Approxir

Jacobian of the Galerkin problem

Foo --- Fop
VuF = co |, Fap=(VuF(U%€), W, Vs) e R™T
.7:};70 e ‘7:14,1)

< If VF is symmetric (a.s.), Vi F is R-diagonalizable
< In particular, scalar problems (m = 1) yield hyperbolicity

< If VyF = LD(€)R, where L and R are deterministic, the Galerkin
problem is hyperbolic

= Properties extend to # truncature rules

= Note that strict hyperbolicity is not to be expected even when V yF has
(a.s.) distinct eigenvalues.

[J. Tryoen et al, JCP 2010, JCAM 2010]
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Galel projection

Stochastic hyperbolic systems Approxir

General case

Let {¢?}, and {w"}, i = 0,...,P the points and weights of the Gauss’
quadrature on =.

Define

(VuF),, Zqu(UP(s D:67) wa (67) ws (67) w? ~ FL

i=0

= Let {N'(&)}/=F, the stochastic Eigenvalues of VF
{Al = N(£D)}) are the eigenvalues of ¥V, F

< For sufficient smoothness, limno—oco Vi F = VuF
= Use {N'(¢)} as approximate spectrum of VyF

[J. Tryoen et al, JCP 2010, JCAM 2010]
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Stochastic hyperbolic systems Approximate Roe Solver

Approximate Roe solver

At
U =uf =[S U) — U U]

where the numerical flux ¢ is chosen as

ot Ug) = 3 1FU) + Fug) - a2

where a € R™P+1)xmP+1) ig 3 non-negative upwind matrix
It exists a Galerkin Roe state UR"" such that
VFu(U%) is a Roe matrix for the Galerkin problem

i.e. has properties of consistency and conservativity through shocks.

We will take

; [F(U) + F(Un)] — |VuF( uR°e)|

where |A| = |LDR| = L|D| R for a R-diagonalizable matrix

[J. Tryoen et al, JCP 2010]

¢(UL?UR)
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1 pr
Approximate Roe Solver

Stochastic hyperbolic systems

Fast approximation of the upwind matrix
To avoid the costly decomposition of the Roe matrix, we rely on a polynomial
transform qq :

1 recall g(LDR) = Lq(D)R
0 |VuF| = qa (VuF), where qq € Py minimizes

ng;[%(AQ—ﬂM

1 In practice d < 6 is sufficient

[ A (ulEn)

|
161 AN

T T T "
16 a4
140

i
[N

e ° AN A
05 1 15 1 05 0 05 1
N

Approximation polynomigl qq for d = 2 (left) and d = 6 (right).
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1 pro
Approximate Roe Solver

Stochastic hyperbolic systems

Summary :
Ut =ul - = [¢(u,,u,+1) SU 1, U]

where
1 oeyy Ur — U
$ULUR) = 5 [F(UL) + FUR)) — qa (VuF (U")) 5
1 Upwinding w.r.t. the actual waves in the Galerkin solution
1 Applies conditionally to partially tensored stochastic basis
a May need [J. Tryoen et al, JCAM 2010]
1 Assume U(&) smooth and sufficient stochastic discretization
[ But solutions are not smooth in general !

Call for piecewise polynomial approximations to allow for discontinuities at
the stochastic level
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Tree data structure
Adapti heme

Burgers equation
Stochastic adaptation Traffic equation

Binary trees for piecewise polynomial space S =38(1)

@ Dyadic partitions of a node along a prescribe directiond : p — (¢, c™)
@ Piecewise-polynomial with fixed order No on each leaf of T.

@ Union of local modal basis : SE-basis

[Deb et al, 2001], [Karniadakis et al]

@ Hierarchical global basis over = : MW-Basis
[OLM et al, 2004]
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Tree dat
Adaptive s

Burgers equation
Stochastic adaptation

Adaptivity
stochastic adaptivity

@ Incomplete and anisotropic binary trees

Operators for multi-resolution analysis :
@ Prediction operator : define the solution in a stochastic space larger than the
current one (add new leafs and L2-injection).
@ Restriction operator : define the solution in a stochastic space smaller one the
current one (remove leafs and L2-projection).

@ Rely on recursive application of , full

exploitation of the tree structure.
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Stochastic adaptation Traffic equation

Adaptivity :

@ Each spatial cell carries its own adapted stochastic discretization
@ Flux computation,

S(UL UR) = FUL) -; F(Un)

with g and U, known on different stochastic spaces

Up - U
- |aROe(uL7uFl')| %7

@ Union operator : given two stochastic spaces, construct the minimal stochastic

space containing the two :

AL AN AR AN
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Tree data structure
Adaptive scheme
Burgers equation

Stochastic adaptation

Adaptive Algorithm :
@ Loop over all interfaces of the spatial mesh :

@ Construct the union space of the left and right cells
o Enrich this space

o Predict left and right states of the interface

o Evaluate the numerical flux (App. Roe scheme)

@ Loop over all cells of the spatial mesh :

@ Construct the union space of the cell’s interfaces

o Predict cell’s fluxes on the union space

o Compute fluxes difference and update cell’s solution
@ Restrict cell's solution by thresholding

© Repeat for the next time step
Two indicators needed : based on multiwavelet details of nodes.
@ for Enrichment : anticipate emergence of new stochastic details,
@ for Thresholding : remove unnecessary/negligible details.
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Stochastic adaptation

Thresholding criterion :
Let us denote

@ T abinary tree and S(T) the corresponding stochastic approximation space
@ n € N(T) a node of the tree, and AV(T) set set of nodes having children
@ Nr the maximal depth allowed in a direction
@ TNy the maximal tree given Nr
We define for U € S(Tnny) and n > 0 the subset of A(Tnny)

e <22t

D(n) := {n € ﬁ(T[NrN]); VNN

where " := (%), <p are the MW coefficients of n.
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Adaptive scheme

Burgers equation
Stochastic adaptation affic ation

Coarsening strategy :
Two sisters (c—, c™) of a parent p(c ™) are removed from the discretization if

”[lp(cf)le < o—Inl/2_"
o NNr
The criterion ensures that || U™ — YT \P || < .
a=1 a=2 a=3 a=4

Mother wavelets W4 for N = 2, No = 1 in direction d = 1.

Note : the coarsening is applied to the class of equivalent trees.
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Tree data structure
Adaptive scheme

Burgers equation
Stochastic adaptation Traffic equation

Enrichment strategy :
Enrichment is necessary to anticipate emergence of new-stochastic details.

@ Isotropic enrichment is not an option for N > 2,3

@ 1-D enrichment criterion : if U is (locally) smooth enough &% of a generic node n
can be bounded as

el =, dnf (U= P)Wa)I < CIS() MUl o1 (5(ny)

where |S(n)| = 2~ 7! is the volume of the node. Therefore
6% o ~ 2~ Nt 72|, and a leaf 1 is refined if

67D, > 2NotT2=111/20 //Nr and  |1] < Nr.
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Tree data structure
Adaptive scheme
Burgers equation

Stochastic adaptation

Enrichment strategy :
Extension of to the N-dimensional case :

@ Using the decay estimation

~Mn_ i _ n,d : No+1
ua|7P€]|Pn§fo[§])<(U P), v >’§Cdlam(8(n)) Ul o1 (50

@ aleaf 1 is partitioned in direction d if

diam(S(p?(1))) "

1
2~ 11172 /NN d |S(1 2N,
dam(S(1)) n/ r and [S(1)[q >

~0d(1
[ =

@ the construction of the virtual sister and parent of 1 in arbitrary direction d

i ©

A sharper anisotropic criterion has been proposed using 1 — D analysis functions in
direction d [J.Tryoen, preprint 2012].
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Stochastic adaptation Traffic equation
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Stochastic adaptation

Burgers equation
oU  9OF(U) U?
—+———==0, FWU)=—
ot + ox W)
Uncertain initial condition U°(x, €) :
Xi2=0140.1&, Xp3=03+0.1&, &1,& ~U[0,1]
2 stochastic dimensions.

1.2
1
0.8 4
E
= 06 E
>
0.4 ,
SE realizations
0.2 <U(x,t=0)>
a(U(x,t=0)) ——
0 |
0.6 0.8 1
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Tree data
Adapt

Burgers equation
Stochastic adaptation Traffic equation

Burgers equation

au  9F(U) L2
LAY o Fuy= 2
ot ox 2
12 12
1 1
0.8 — 0.8
g g
2 06 1 g 06
B K3
0.4 — 0.4
" MW realizations
02 i 1 02 | <U(i=0.4)>
o(U(x,t=0.2)) —— o(U(x,t=0.4)) ——
0 1 1 A 0 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x X
12 12
1 1
0.8 0.8
| £
2 06 g 06
s B3
0.4 04
SE realizations MW realizations
02 | <Ux!t=0.6)> B 02 | <Uxt=0.8)> —— 4
o(U(x,t=0.6)) —— o(U(x,t=0.8)) ——
0 I I 0 I I I I
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
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Tree data structure
Burgers equation

c
S
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2]

Burgers equation

@
2
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i
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Stochastic adaptation

Trafic equation in periodic [0, 1]-domain

F(U(£); &) = A(E)U(€)(1 — U(€)) 1-Periodic BC.

U°(x, £) =0.25 + 0.01¢; — Ijp.1.04(x)(0.2 + 0.015¢2)
+Ijo.3,0.5/(X)(0.1 4+ 0.015&3) — Tjo.5,0.71(X)(0.2 + 0.015&,)

o A(€) =1+0.1&
@ 5-dimensional problem (&1, ..., &) ~ U0, 1]°.

Uxt-00)
Uxt=0.429)
U098

005 [ = =

r ==

0 0 0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

20 realizations of the initial condition (left) and solution at t = 0.4 (middle)
and t = 0.9 (right) : 2 shocks and 2 rarefaction waves.
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Stochastic adaptation Traffic equation

Space-time diagrams of the solution mean (left), standard deviation (center)
and average depth of the leafs (right) :

0.4

0 1 0 1
X X

Averaged number of partitions in each direction D; and anisotropy factor p :
Dy D> Ds D, Ds P

6
4
2
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Stochastic adaptation Traffic equation

Hoeffding decomposition.

N N N
U &) =Uo+ > Un(&) + D D Uiin(Gis &) + -

i1=1 i1 =1 p=iy+1
+ U17-<-7N(€/‘1 3 7£iN)7
Sobol ANOVA (analysis of the variance)

N N N
V(U) = Z Vi +Z Z Vi ++ Vi x,

iy =1 i =1 ip=iy +1

@ First order sensitivity indexes : S; = V;/V
o Total sensitivity indexes : Ti = Yot () Vu/V
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Stochastic adaptation

Si S S3 S4

LAY

Space-time diagrams of the 1-st order sensitivity indexes S; and contribution
of higher order indexes.
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Stochastic adaptation

1F T 3 1FT, 3
o /\A 0 AN
1F T 3 1R, 3
. A/\ . P
1F T4 1F, E

C

1F 1

0 Ts z
Total sensitivity indices as a function of x e [0,1] att = 0.4 (left) and t = 0.9
(right).
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equation
Stochastic adaptation Traffic equation

L2-norm of stochastic error for different values of € [1072,107°] and
polynomial degrees No

102 ‘ 102 ‘
No=2 —+— No=2 —+—
! No=3 *\ No=3
0,3 No=4 —x— | 0.3 No=4 —*— |
1 . No=5 —&— 1 N No=5 —=—
1 ™~ ~
10" Sy 10 R
] R 7 R
w w \
10° 10°
SN N
10 = - 10 Py
107 107
10° 10* 10° 10° 10° 10° 107 108
Total number of SE Total number of DoF

Left : error as a function of the total number of leafs in the final discretization
(t" = 0.5). Right : error as a function of the total number of degrees of
freedom (number of leafs times the dimension of the local polynomial basis).
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arbitrary units

CPU-TIME per Iteration

Stochastic adaptation

100 T

0.01 L L

Total
O(#leafs)
Flux (total)
Integration
Coarsening
Enrichment
Flux (Union)

Flux (Evaluation)

10000 100000
#of leafs

1e+06

Traffic equation

CPU-TIME per Iteration

arbitrary units

0.1

0.01

>

Total
O(#leafs)
Flux (total)
Integration
Coarsening
Enrichment
Flux (Union)

Flux (Evaluation)

100000
# of leafs

10000

Computational time (per time-iteration) as a function of the stochastic
discretization (total number of leafs) ; left : No =2 and n = 1073; right :

No=3andn=10""%.
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Tree data structure

Burgers equation
Stochastic adaptation Traffic equation

-Thank you for your attention-

Collaborations :
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A. Ern (CEMICS, ENPC), M. Ndjinga and J.-M. Martinez (CEA, Saclay), A. Nouy (GeM, Centrale Nantes), L. Mathelin (LIMSI, CNRS)
Current Fundings :

GNR MoMaS and Agence Nationale pour la Recherche (projects : TYCHE & ASRMEI)
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Appendix Additional results

2nd test case N )
Continuous initial conditions : two constants stochastic states

U=U"=140.05 x <1/3,
U=U =-1401 x> 2/3,

and affine variation in between. U > U™ a.s. and U* and U~ independent with
uniform distribution : Ut (&), U™ (&2).

1.5 T T L
SE realizations
1 <U(x,t=0)> 7
05 | o(U(x,t=0)) —— |
g
s 0 7
>
-05 -
-1+
_15 1 1 1
0 0.25 0.5 0.75 1

Ut(&1) + U™ (&) #0as.
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Appendix Additional results

2nd test case

15 T
= U(E(w)
2 ! <U>
T | u) — |
Z os o)
=) 0 \ 7
/°\, 0.5 \ 1
S 4L Ny
v
15 . . | .
0.35 0.4 0.45 05 0.55 0.6 0.65
15 T T T
= U(E(w)
3 1 \><‘ <U> —
kg v —
5 05f o) ]
s o 1
° 05| B
E) \—
v 1r
15 . . . .
0.35 0.4 0.45 05 0.55 0.6 0.65
X
15 T T T T
= UEw)
é 1 = ™ 1 1\ <U> — 7
= L o) —— |
Z os /{ \
s of 1
7\, 05 | |
L \'¥
E
45 . . . .
0.35 0.4 0.45 05 0.55 0.6 0.65

Solution with x at differe?ﬂ times.
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