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Why nonlinear data assimilation?

Particle filters are a fully nonlinear data assimilation method, but why are
nonlinear schemes required?

The complexity of models are increasing:

Precipitation
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Why nonlinear data assimilation?

The resolution of models 1s also increasing:

Surface Altitude (feet)




Particle filters

-Filtering:

Prediction: P(Uj+1‘yj) :/ P(Uj+1‘vj)P(Uj‘Yj)dvj

P(yj+1|vj+1)P(vj41]Y5)
P(y+1]Y5)

Analysis: [[D(UjJrl‘YjJrl) —

-Particle filtering:

Zw<”>6 = v)")




Particle filters

How to determine the new positions and weights of particles at
time j+1 given the weights and positions at time j?

{UJ('n)aw]('n)}g:l — {Ug('i)lawg(i)l =1

Prediction:

PoglVy) = [ Plojialo)Plusl¥;)de,

mn

P(vjy1|vy)
= Q(vj41lv5, Yj41)P(v;]Y;)dv;
/n Qvjs1|vj, Yigr) 700 TS




Particle filters

Overall framework, given {v,

(n) N
j }n:

1) Sample the new position of each particle by sampling from a
proposal probability distribution ( )

oSy ~ Qi [vf", Vi)

2) This new particle is then re-weighted according to the analysis
formulae of filtering to give (n)

]—I—l ‘v(n))

3) The weights are normalised so that they sum to one ( )
~\ M
e Wit

S‘ 1 W
JNn= 7+1

Leading to:

P(”Uj+1DG‘—|—1) IP)N(fUJ—I-1|Yj7‘|‘1 ng+1
n—+1




Different particle filters

The key two elements that differ between particle filters are:

-proposal distribution

vyt~ Q)™ Vi)

—associated weight update

(n)) P(v (n)

(n))

J+1‘U

Qi [v§", Y1)

~(n n ]P)(y]-l- |U +1
5, = o™ ;




Standard particle filter - proposal density

-proposal distribution

Qvjt1|v, Yjp1) = P(vjp1|vy)




Standard particle filter - weight update

Qi [, Y1) = P\, [0!™) =

(’n)) P( (n)

A(n) (n) P(y]—F ‘Ug—l—l 3—|—1|U<n))

— W,
Wit1 J IP)( (n) ‘v(n))

—associated weight update
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Standard particle filter - weight update
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Standard particle filter




Standard particle filter

Old weights are
multiplied by the
new weights




Sequential Importance Resampling (SIR) particle filter
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Sequential Importance Resampling (SIR) particle filter




Sequential Importance Resampling (SIR) particle filter




Sequential Importance Resampling (SIR) particle filter




A simple resampling scheme

1. Put all the weights after each other on the unit interval:

() IR [ [N N WS W S ——
wl w2 w3 w4 wb wb6 w7 w8 w9 wlO

2. Draw a random number from the uniform distribution over [0,1/N],
in this case (with 10 members) over [0,1/10].

3. Put that number on the unit interval: its end point is the first member
drawn.

4. Add 1/N to the end point: the new end point 1s our second member
drawn. Repeat this until N new members are obtained,

e

m1l m?2 m3 mb5 m5 mo mo6 m38 m& m1l0

5. In our example we choose m1, m2, m3, m5 twice, m6 twice, m8
twice and m10 and loose m4, m7 and m9 due to small weights




Sequential Importance Resampling (SIR) particle filter
1. Set j =0 and PV (vg|Yp) = P(vp)

2. Draw vj(-n) ~ P (v;]Y;) (resample)

3. Set wi™ =1/N, n=1,...,N

S

(Vj41

ie. Set 017 = w(u{™) +

{™)

5. Calculate wj(-z)l = P(yjﬂ\vj(-i)ﬁ/ (

where P(yj+1|v§1)1) X exp (

6. 7 +1+— 7 and return to step 2




Lorenz 63 system of equations - 20 particles
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Lorenz 63 system of equations

Model prior
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Lorenz 63 system of equations

Model prior (blue) and posterior (red)
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Lorenz 63 system of equations

posterior (red) compared to truth (green)

x—variable

green truth posterior pdf comes from a 1000 particle run of the standard
particle filter




observations are generated

— truth run from which the
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Standard Particle Filter fails - filter degeneracy

Model prior

Frequency
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Standard Particle Filter fails - filter degeneracy

Model prior (blue) and posterior (red)
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Standard Particle Filter fails - filter degeneracy

posterior (red) compared to truth (green)

x—variable




High dimensional systems

Barotropic vorticity: Dq g

Dt Ot
256 by 256 grid - 65,536 variables
Doubly periodic boundary conditions
Semi-langrangian time stepping scheme
Twin experiments
Observations every 50 time steps - decorrelation time of 42

32 particles




Mean of SIR filter fails to capture truth

e Every variable 1s observed

e 1200 time steps




SIR Filter - filter degeneracy 1s evident

True model state Mean of particles
\ W N\ )

) = | o W | S

7.
7,
7

=

_

) / /
/’% | /5 N = /
= ,;;4// n ' ' ' l T T T T T T
50p @ 0.9) |
q =
A\
0.7 :
0.6

/ \
=
N
= \
) b ")
_ _ b\
10 150 200 -

«“

15

| Mean of ensemble generated with
standard particle filter compared to
| true model state at time step 50




A closer look at the weights

Assume particle 1 1s at 0.1 standard deviations s of M
independent observations. Then its weight will be:

. 1|1
J(i)l X ExXp ( 5 ‘F 2 (Yj+1 — h( §21))| ) = exp(—0.005M)

Assume particle 2 1s at 0.2 standard deviations s of M
independent observations. Then its weight will be:

N |
ﬁt)l X exp ( 5 ‘F 2 (Y41 — h( ](i)l))| ) = exp(—0.02M)




A closer look at the weights

The ratio of the weights is:

So for M=2 the ratio of the two weights 1s:

5(2)
A](Ir)l exp(—0.03) =~ 0.1
Wj 1

But for M=1000 the ratio of the two weights is:

752

j(j)l exp(—15) ~ 3 x 1077
Wit

Conclusion: the number of independent observations 1s responsible for the
degeneracy in particle filters




Different particle filters

-proposal distribution

vyt~ Q)™ Vi)

—associated weight update

(n)) P( (n)

o Pl o) P o))

Qi [v§", Y1)

Proposal densities can be chosen to try and reduce this variance
in the weights.




Optimal proposal density

-proposal distribution

Q(vj 105",

§1)1)0<6XP (—5 2 (Yj4+1 — 3(1)1

this equates to (assuming a linear observation operator):

i = U™ zjﬂ”HzHTEEi:]%+l HY (v 5)+Qﬁ)

(™ ~ N(0, P), = > '+ H'T'H

This 1s similar to Kalman gain matrix K but using model error rather than
prior error




Optimal proposal density - weight update

, NP () \v(n))
Q(v (1) ‘v(n) Vi) = | | " Y1) Y541
: \.'/)

Yi+1

Linked to the use of the Kalman gain, the choice of new model state is the
maximum a-posterior of these two distributions

) (n)IP)(yJ-I— |UJ+1) ( ﬁ)ﬂ?f
J‘|‘1 ) T T
Q( g(+)1‘v( ) Y1)

(n))

= wP(y;41]v;")

weight does not depend on new model state

—associated weight update /

A(n) (n)P(y /| j(n))

Wit1 ;5




Optimal proposal density - weight update

sample of random error from stated distribution has no effect on the weight

\

n n —1 n n
oty = w(i™) + SHT (HRHT +T) 7 (g0 — HO(")) + "

n 1 1 NNL:
IP’(yjH\v](- )) X exp (—5 ‘(HZHT+F) 2 (111 —H\If(vj(- )))’ )

weight 1s the maximum weight it 1s possible

for a particle to achieve given its position U](-n)

The variance in the weights is therefore the variance in the maximum weight
it 1s possible for each particle to achieve




Optimal proposal density

1. Set j =0 and PV (vg|Yp) = P(vp)
2. Draw vj(-n) ~ P (v;]Y;) (resample)
3. Set wi™ =1/N, n=1,...,N
4. Draw Ug(+)1 ~ P(0j41] §n)7yj+1)

e et o2, = W)+ BT (HSHT4T) (300 — HUG) + ¢

5. Calculate w(+)1 = P(y (Z P y3+1|v(n) )

1
where IP)(yJH]fU( ))  exp (—5 (

6. 7 +1+— 7 and return to step 2




Optimal proposal density - variance of weights

Standard proposal Optimal proposal

occurrences
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(‘Particle filters, the ‘optimal’ proposal and high dimensional systems’ Snyder, 2012)

Optimal proposal improves on SIR filter, but filter degeneracy still occurs in
high dimensional systems




Ensemble Kalman Filter as proposal

prediction @(1)1 = \IJ(UJ(.”)) + 5(."), g(n) ~ N(0,X)

analysis v(+)1 = (I — K]+1H)AJ(1)1 + K11 yj(i)l

observation (n) (n) (n)
perturbation Yix1 = Yj+1 +njg1s Mg ~ N(O,T)

(1)

ol = O™+ Ky (g1 — HE ) + (I — K H)E™ + Kjoan'™,

w_/

Deterministic = [t Stochastic

Q=-K;jnH)S(I - KjH)' + KjTKj

-proposal distribution

QoA 0" Vi) xexp ( o= )




Ensemble Kalman Filter as proposal

—1

AN

Kalman gain: K 1 = Oj+1HT (H@-HHT + F)

Approximated using
the ensemble

So the proposal used to update each particle actually depends on all the other
particle positions. However, for an infinitely large ensemble of particles, the
Kalman gain will depend only on the system of model equations via the

prediction step.




Ensemble Kalman Filter as proposal - weight update

No longer have a simplification in the weights (as in the optimal proposal
density) and so need to directly calculate the different constituent parts of
the weight for each particle (n) 1, (1)
) _ oy P(U 11|05 P P [0])

J‘|‘1 o ”LU] n n
Q( ;ﬁlw Y1)

QA ol Vi) xcexp (5@ 2wl — )|

P(o™) [00) o exp (—— R TO

P(yjﬂfvj(-i)l) X €xp <——




Ensemble Kalman Filter as proposal

1. Set j =0 and PV (vg|Yp) = P(vp)
Weighted EnKF now ensures the

2. Draw Uj(-n) ~ PN (v;]Y;) (resample) true posterior is represented but
unfortunately filter degeneracy

3. Set w§-n> =1/N, n=1,...,N still occurs.

4. Set

vty = V(") + K yien = H(W(05") + (1= Ky g + Ky

5. Calculate wﬁl = @51)1/ (Z @3(1)1)

where w](Jr)l X exp < ‘F__ Yi+1 — h(v;

| 2

-5 [FEO - we)

6. 74+ 1~ j and return to step 2




Summary

SIR particle filter

* The proposal density 1s the model transition density and so the model
equations are used to propagate each particle forward in time

e The weight 1s calculated based on the likelihood, so the distance of each
particle to the observation

Optimal proposal density

e The new model state 1s sampled from a proposal which 1s the density of
possible new model states given the old model state and the observation

e The weight is then calculated based on the maximum weight a particle could
achieve given the old model state and the observation

Weighted ensemble Kalman filter

e The new model state 1s generated using the Ensemble Kalman equations
e The weight then must be calculated directly through all three constituent
parts

Although the optimal proposal density improves on the SIR filter, all three schemes
still suffer from filter degeneracy. This 1s because of the difficulty in sampling from the
high probability region of the posterior in high dimensions with large numbers of
independent observations.
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