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Particle filters

-Variational methods:

-Ensemble Kalman Filter:
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Particle filters

-~-Markov Chain Monte Carlo:
P(v;]Y;)

Propose a new sample

k) q(v(k—l)jg(k))

Acceptance criteria
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-Particle filtering:
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Particle filters - general formulation
1. Set 5 = 0 and P¥ (vo|Yy) = P(vo)

2. Draw vj(-n) ~ P (v;]Y;) (resample)

3. Set wi™ =1/N, n=1,...,N

4. Draw 0,7 ~ Q(0j41 /0", Yj41)

(n)
5. Calculate @(n)l — ™ P(%H‘UJH) (v311v;
7+ J ( (n) ‘U(n) Y )

Yj+1

(n))

6. 7+ 1 +— 5 and return to step 2




SIR, optimal and EnKF as proposal densities

SIR filter:

-proposal distribution

Qvjt1|vj, Yjp1) = P(vjy1|vj)
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—associated weight update
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e Suffers from filter degeneracy even in very low dimensional systems




SIR, optimal and EnKF as proposal densities

Optimal proposal density:

-proposal distribution
Q(uj1lo5”, Yir) = Pujsaloy”, )

n n —1 n
oty = w(i™) + SHT (HSHT +T) 7 (g0 — HO(")) + "

—associated weight update
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eImproves over SIR - but still fails in high dimensional systems with large numbers of
independent observations




SIR, optimal and EnKF as proposal densities

Weighted EnKF:

-proposal distribution
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High dimensional particle filters

e As the dimension of the system and the number of independent observations
increase, the variance in the weights also increases. All three schemes suffer from
filter degeneracy and so are not applicable to high-dimensional systems.

e More complicated proposal densities are required to reduce the variance in the
weights

Particle filters have so far been discussed assuming
observations have been available at every time step

Model: vig1 = Y(v;)+¢5, jeN
vo ~ N(mo, Cp)
‘fj ~ N(07 Z)

Observation: yr = h(vg) +nx, k€N
n~ N(0,T)
Assume now observations are
available only every [ time steps




Particle filters

How to determine the new positions and weights of particles at
time kl given the weights and positions at time (k-1)17?

{U/i?)vwkz)}n 1 {U(k+1)zv Ezzq)z}n:l

First option:

1) Sample the new position of each particle at each intermediate time
step by sampling from a proposal probability distribution

o~ QI ol Yien), 5= Rl (k4 1)

These proposal densities do not have to be the same!

2) The particle i1s then weighted at observation time by

P(v (n) ‘v(n) ) P (n) ‘/U(n))
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Equivalent-weights particle filter

Aim: To reduce the variance in the weights by ensuring that all
particles are close to the observation at analysis time
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Primitive equation model - what should the relaxation be?

True sea surface perturbation (m)
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Primitive equation model - what should the relaxation be?

If we have observations only of sea surface height, then how will it effect velocity if
we only relax towards these observations?

Relaxation term:

B(r) = bp(T)SHTT Y (ygs 1y — h(0{™))
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8¢ Y Information from h is seen by u
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Equivalent-weights particle filter

_associated weight update at each intermediate time
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Filter degeneracy of relaxation proposal density
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Lorenz 63 - filter degenerate if only relaxation proposal density 1s used

Model prior
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Lorenz 63 - filter degenerate if only relaxation proposal density 1s used

Model prior (blue) and posterior (red)
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Lorenz 63 - filter degenerate if only relaxation proposal density 1s used

posterior (red) compared to truth (green)
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Filter degeneracy of relaxation proposal density

Particle filters: Choose proposal density -> Calculate weight

Final proposal density: Choose weight -> Calculate proposal density

t=(k+1)I-1




What should the weight be?

(n) N () k+1)1—2
A(n) _ IP)(y"fﬂ|U(l-c+1)l)IP)( (k+1)l|v(k+1)l—1) ( +1—)[ @(n)

Y1y = (1) (1) J
Q(v (k—l—l)l‘v(lﬂ—l)l—l’ Yit1) j=kl

Optimal proposal density:

n n —1 n n
oty = () + SHT (HSHT +T) " (g0 — HE(@")) + ¢

However, already leads to filter degeneracy in high
dimensional systems without accounting for the additional
weight from the relaxation proposal densities

Equivalent-weights proposal density:

n n —1 n n
J(-I—)l = U(v; ) HT (HEH" +T) (yj+1 —H‘I’(Ug(' ))) +CJ(' |

Cg('n) ~ (1 = ) U(—w,v0) + eN(0,73%)

mixture density




Equivalent-weights particle filter
1. Set j =0 and PV (vg|Yp) = P(vp)

Relaxation proposal density:

2. If j + 1 # Kkl then draw v§1)1 ~ Qrelax(vj+1\v(n), Yki)

Le. Set 97}y = ¥(vj") + B(7) (ykz — h(vg('n))) + &5

(n) P(v,y ) \U(n))
3. Calculate w; 5 = (n) )
Qrelax( ]_|_1|v 7ykl)




Equivalent-weights particle filter

Equivalent-weights proposal density:
4.1f 5 +1 = kl then draw v,g'l?’) ~ @equiv(vkl\vgﬁl, Ykl )

. n n —1 n n
Le. Set )}y = ¥(v)") + oW EHT (HSH" +T) (yj+1 — HY(v} ))) + ¢

(n) (n). (n) kl—1
v v
5.Calculate @,({7) — (ykl‘ u ) ( ul ‘ Tkl 1) | I w§-n>

@eqUiV(vkl i ‘UI(JZL) 1> Yki) j=(k—1)I

6.Calculate w,g?) = \vkl (ZP ykl\v(n) )

7.9+ 1 — 5 and return to step 2




Lorenz 63 - equivalent-weights particle filter

9
Q
)
L S
<
d
N

— truth run from which the
observations are generated

— particles




Equivalent weights particle filter - spread seen in model prior distribution

Model prior
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Equivalent weights particle filter - spread also seen in posterior distribution

Model prior (blue) and posterior (red)
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Equivalent weights particle filter - both spread and mode of truth captured?

posterior (red) compared to truth (green)
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Standard Particle Filter - filter degeneracy 1s evident

True model state Mean of particles

N ———— ////// ’/"; ’Z 4 q = =S ) /://7////,;;7

q
0.8

| Mean of ensemble generated with
SIR particle filter compared to true
| model state at time step 50




Equivalent weights particle filter - 1/4 observations over the full state

Mean of particles

e Every other variable is observed
e 32 particles

e Observations every 50 timesteps

e 1200 time steps



Spread now seen in the posterior pdfs

Marginal posterior pdfs at time step 1150
Observations of every other variable
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More work required to really assess whether these posterior
representations match the true posterior pdf




The majority of particles have equivalent weights

Weights of particles before resampling at time step 1150
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Similar patterns in spread - 1/4 obs

Variance (Mean - Truth)?
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Good spread in the ensemble judged over all time steps

Observations of every other variable
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Equivalent weights particle filter - 1/4 observations over half the state
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Individual particles -1/4 observations over half the state - time 1150
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Multi-modal behaviour captured in posterior pdis
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Implicit particle filter

How to determine the new positions and weights of particles at
time (k+1)1 given the weights and positions at time kl?

(o it iy = (0 Wi e

Second option:
Related to the optimal proposal density

n n —1 n n
oty = (i) + SHT (HSHT +T) " (g0 — HE(@")) + ¢

However, generalised to trajectories in time incorporating several observations

(™) = (v%n), . ,v,g'z)) = argminv(n)](v§n), ot ,vfﬁ); Yi) + ( frz)’ e l(c?))

4D-Var with fixed initial condition




Implicit particle filter

-optimal proposal density

n 1 _1 n 2
w,il) X exp (—5 |(HEHT + 1) 72 (yp — H\I!(v,ilzl))‘ )

(1)

Weight over one time step depends on maximum weight given v, 4

-Implicit particle filter

n 1 . n
w,(d) X exp (——m1n[(v§ ),...,vkl(”);Yk)> T (v(™)]

v(n)

Weight for trajectory depends on MAP estimate and a Jacobian
which depends on the way the random error i1s chosen

Variance in weights depends on the variance of the maximum
weights possible given the initial conditions




Combine 1deas of equivalent-weights and variational methods

-Equivalent-weights with 4D-Var

n ]‘ n
w,gl) X exp (—5 {I(vg ). upl™ V) — ]tmget}> T (v(™)

Variance in weights now only depends on the way

the random error 1s chosen

Trajectory is no longer chosen to minimise the cost function but rather to

ensure it holds a specific value

I(w™, ... ol ™Y = rterset

Trajectory no longer has the maximum weight possible given the initial
conditions but a chosen percentage of particles will now all have

significance when representing the posterior




Summary

-Particle filtering:

Disadvantages: Advantages:

« high variance in the weights leads to e fully nonlinear, so allow a representation
filter degeneracy, where only one particle of a potentially multi-modal posterior pdf.

has any significance in the posterior.
* no need for an estimate of the state

e filter degeneracy linked to the dimension covariance, only model error covariance
of the system or the number of required.
independent observations.

 because of this they are difficult to apply
in lot of real life high dimensional
applications.

High dimensional particle filters use the free choice of proposal density to try and
sample particles from the posterior whose weights do not have high variance




Summary

Optimal proposal density
g PP \ Filter degeneracy still occurs in
EnKF as proposal density __— high dimensional systems

Implicit particle filter > + Good results seen, depending on the
method for choosing the random error

Further research required to determine
whether filter degeneracy really 1s avoided
with high numbers of observations

Equivalent-weights particle filter > - Filter degeneracy 1s avoided by
formulation

» Promising results that the posterior
representation matches the true pdf, but
further research required to fully determine
this
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