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Particle filters

Variational methods:

Ensemble Kalman Filter:

3D-Var

4D-Var

�v(n)j+1 = Ψ(v(n)j ) + ξ(n)j , ξ(n)j ∼ N(0,Σ)

v
(n)
j+1 = (I −Kj+1H)�v(n)j+1 +Kj+1y

(n)
j+1

y(n)j+1 = yj+1 + η(n)j+1, η(n)j+1 ∼ N(0,Γ)

prediction

analysis

observation perturbation



�v(k) ∼ q(v(k−1), �v(k))

a(v(k−1), �v(k)) = 1 ∧ ρ(v(k−1))q(�v(k), v(k−1))

ρ�v(k))q(v(k−1), �v(k))

P(vj |Yj) ≈
N�

n=1

δ(vj − v(n)j )

Particle filters

P(vj |Yj) ≈
N�

n=1

w(n)
j δ(vj − v(n)j )

Particle filtering:

Markov Chain Monte Carlo:

v(n)j+1 ∼ Q(v(n)j+1|v
(n)
j , Yj+1)

�w(n)
j+1 = w(n)

j

P(yj+1|v(n)j+1)P(v
(n)
j+1|v

(n)
j )

Q(v(n)j+1|v
(n)
j , Yj+1)

Propose a new sample

Acceptance criteria

Generate a new sample

Weight the sample



Particle filters - general formulation

1. 

2. 

3. 

4. 

5. 

6. 

Set j = 0 and PN (v0|Y0) = P(v0)

Draw v(n)j ∼ PN (vj |Yj) (resample)

Set w(n)
j = 1/N, n = 1, . . . , N

j + 1 �→ j and return to step 2

Draw �v(n)j+1 ∼ Q(�vj+1|v(n)j , Yj+1)

Calculate �w(n)
j+1 = w(n)

j

P(yj+1|v(n)j+1)P(v
(n)
j+1|v
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Q(v(n)j+1|v
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SIR, optimal and EnKF as proposal densities

proposal distribution
Q(vj+1|vj , Yj+1) ≡ P(vj+1|vj)

associated weight update

�w(n)
j+1 ∝ w(n)

j P(yj+1|v(n)j+1)

SIR filter:

• Suffers from filter degeneracy even in very low dimensional systems

v(n)j+1 = Ψ(v(n)j ) + ξ(n)j

P(yj+1|v(n)j+1) ∝ exp
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�w(n)
j+1 ∝ w(n)

j P(yj+1|v(n)j )

SIR, optimal and EnKF as proposal densities

Optimal proposal density:

•Improves over SIR  - but still fails in high dimensional systems with large numbers of 
independent observations

proposal distribution

associated weight update

Q(vj+1|v(n)j , Yj+1) ≡ P(vj+1|v(n)j , yj+1)

v
(n)
j+1 = Ψ(v(n)j ) + ΣHT

�
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SIR, optimal and EnKF as proposal densities

Weighted EnKF:
proposal distribution

associated weight update

Q(v(n)j+1|v
(n)
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High dimensional particle filters

•As the dimension of the system and the number of independent observations 
increase, the variance in the weights also increases. All three schemes suffer from 
filter degeneracy and so are not applicable to high-dimensional systems.

•More complicated proposal densities are required to reduce the variance in the 
weights

Notes on MCMC

These notes consider the implementation of the pCN MCMC method in the stochastic dynamics
setting.

1 Notation

Following the notation of the lecture notes;

Model: vj+1 = Ψ(vj) + ξj , j ∈ N (1)

v0 ∼ N(m0, C0) (2)

ξj ∼ N(0,Σ) (3)

(4)

Observation: yk = h(vlk) + ηk, k ∈ N (5)

η ∼ N(0,Γ) (6)

Where in every experiment conducted in these notes the distance between observations, l, is kept
constant.

2 Model setup

The model used for the experiments in these notes is the Lorenz 63 model with additive stochastic
error. Just to make it clear exactly what I’m doing, l use an Euler-Maruyama method to
propagate the model:

v0j+1 = v0j +∆tσ(v1j − v0j ) + ξ0j

v1j+1 = v1j +∆t(ρv0j − v1j − v0j v
2
j ) + ξ1j

v2j+1 = v2j +∆t(v0j v
1
j − βv2j ) + ξ2j

with σ = 10, β = 8/3, ρ = 28 and ∆t = 0.01. The stochastic error is drawn from N(0,Σ)
with

Σ =





0.02 0.01 0.005
0.01 0.02 0.01
0.005 0.01 0.02



 (7)

and the initial conditions are drawn from N(m0, C0) with

m0 =





1.508870
−1.531271
25.46091



 , C0 =





0.02 0.01 0.005
0.01 0.02 0.01
0.005 0.01 0.02



 (8)

1

 Particle filters have so far been discussed assuming 
observations have been available at every time step

Assume now observations are 
available only every   time steps



{v(n)kl , w(n)
kl }Nn=1 �→ {v(n)(k+1)l, w

(n)
(k+1)l}

N
n=1

v(n)j+1 ∼ Q(v(n)j+1|v
(n)
j , Yj+1), j = kl, . . . , (k + 1)l

�w(n)
(k+1)l = P(yk+1|v(n)(k+1)l)

P(v(n)(k+1)l|v
(n)
(k+1)l−1)

Q(v(n)(k+1)l|v
(n)
(k+1)l−1, Yk+1)

, . . . ,
P(v(n)kl+1|v

(n)
kl )

Q(v(n)kl+1|v
(n)
kl , Yk+1)

Particle filters

How to determine the new positions and weights of particles at 
time kl given the weights and positions at time (k-1)l?

1) Sample the new position of each particle at each intermediate time 
step by sampling from a proposal probability distribution

First option:

2) The particle is then weighted at observation time by

These proposal densities do not have to be the same!



Ψ(v(n)j )

Equivalent-weights particle filter

Q(vj+1|v(n)j , Yk+1) = N
�
Ψ(v(n)j ) +B(τ)(y(k+1)l − h(v(n)j )),Σ

�proposal distribution

t=j

t=j+1

t=(k+1)l

v(n)j

+B(τ)(y(k+1)l − h(v(n)j ))+ξ(n)j

Aim: To reduce the variance in the weights by ensuring that all 
particles are close to the observation at analysis time

vj+1 = Ψ(v(n)j ) +B(τ)(y(k+1)l − h(v(n)j )) + ξ(n)j



Primitive equation model - what should the relaxation be?

added to the deterministic model equations in addition to the stochastic error term. In161

previous papers the size of the additional relaxation term in (6) has been kept smaller than162

the stochastic error term (Ades and Van Leeuwen 2013, 2014). The assumption being that163

it will not have an increased impact on gravity waves beyond that induced by the model164

error. The validity of this assumption is investigated in Section 6c.165

The additional term required in the equivalent weights step (7) is of more interest. The166

factor αi in this term dictates the change in model state required by each particle in order167

to ensure the weights of the majority of particles are equivalent. It was found with both the168

Lorenz 63 system of equations (Ades and Van Leeuwen 2013) and the barotropic vorticity169

equation (Ades and Van Leeuwen 2014) that this often led to movement comparable to or170

larger than that induced by the deterministic model equations. The concern is whether171

this movement causes the introduction of sufficient additional gravity waves to destroy the172

dominance by the model balances (examined in Section 6d). It should be noted that, to173

a rough approximation, variational and EnKF-based methods would enforce similar sized174

movements in the primitive equation model used in this article.175

3. Primitive-equation model176

a. Single layer ocean model177

To answer these questions a single-layer primitive equation model is used. The model178

is based on horizontal momentum equations and a continuity equation and mimics a wind-179

driven ocean as a reduced-gravity system:180

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + g�

∂h

∂x
=

τ (x)

ρh
− A∆u+ dβu

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu+ g�

∂h

∂y
= −A∆v + dβy

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = dβh, (8)
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APPENDIX B

PRIMITIVE EQUATION MODEL

The primitive equations on a β plane are used in this thesis to assess the impact the equivalent-weights

particle filter has on balances through twin experiments. This appendix details the version of the prim-

itive equations used and the numerical approximation scheme with which they are solved. The condi-

tions and parameter values used in the model are described. Particular attention is paid to the formula-

tion of the model error included as part of the equations and the methods used to compute this model

error.

B.1 The primitive equations

FIGURE B.1: A simplification over one dimension of the single layer model.

The model used is a single layer model depicting the perturbations e around a fixed interface of depth

H in a stratified ocean (Fig. B.1). The layer below the lower interface is assumed to be at rest. The total

Page 151

Sea surface

Layer interface



Σ = UΣψU
T U :

u = −∂ψ

∂y

v =
∂ψ

∂x

h =
f0
g�
ψ

B(τ) = bp(τ)ΣHTΓ−1(y(k+1)l − h(v(n)j ))

Primitive equation model - what should the relaxation be?

Relaxation term:

Information from h is seen by u 
and v through the multiplication 
by Σ

If we have observations only of sea surface height, then how will it effect velocity if 
we only relax towards these observations?



Q(v(n)j+1|v
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P(v(n)j+1|v
(n)
j )

Q(v(n)j+1|v
(n)
j , Yk+1)

Equivalent-weights particle filter

associated weight update at each intermediate time



�w(n)
(k+1)l = P(yk+1|v(n)(k+1)l)

(k+1)l−1�

j=kl

P(v(n)j+1|v
(n)
j )

Q(v(n)j+1|v
(n)
j , Yk+1)

Filter degeneracy of relaxation proposal density



Lorenz 63 - filter degenerate if only relaxation proposal density is used
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Lorenz 63 - filter degenerate if only relaxation proposal density is used

Model prior (blue) and posterior (red)
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Lorenz 63 - filter degenerate if only relaxation proposal density is used

posterior (red) compared to truth (green)



t=(k+1)l-1

t=(k+1)l

Particle filters: Choose proposal density -> Calculate weight

Final proposal density: Choose weight -> Calculate proposal density

Filter degeneracy of relaxation proposal density



�w(n)
(k+1)l =

P(yk+1|v(n)(k+1)l)P(v
(n)
(k+1)l|v

(n)
(k+1)l−1)

Q(v(n)(k+1)l|v
(n)
(k+1)l−1, Yk+1)

(k+1)l−2�

j=kl

�w(n)
j

ζ(n)j ∼ (1− �)�Uk(−γU , γU ) + �N(0, γ2
NΣ)

What should the weight be?

v
(n)
j+1 = Ψ(v(n)j ) + ΣHT

�
HΣHT + Γ

�−1
�
yj+1 −HΨ(v(n)j )

�
+ ζ(n)j

Optimal proposal density:

However, already leads to filter degeneracy in high 
dimensional systems without accounting for the additional 
weight from the relaxation proposal densities

v
(n)
j+1 = Ψ(v(n)j ) + α(n)ΣHT

�
HΣHT + Γ

�−1
�
yj+1 −HΨ(v(n)j )

�
+ ζ(n)j

Equivalent-weights proposal density:

mixture density



Equivalent-weights particle filter

1. 

2. 

3.   

Set j = 0 and PN (v0|Y0) = P(v0)

If j + 1 �= kl then draw v(n)j+1 ∼ Qrelax(vj+1|v(n)j , ykl)

i.e. Set �v(n)j+1 = Ψ(v(n)j ) +B(τ)
�
ykl − h(v(n)j )

�
+ ξ(n)j

Calculate w(n)
j+1 =

P(v(n)j+1|v
(n)
j )

Qrelax(v
(n)
j+1|v

(n)
j , ykl)

Relaxation proposal density:



Equivalent-weights particle filter

4. 

5. 

6. 

7.  j + 1 �→ j and return to step 2

Calculate �w(n)
kl =

P(ykl|v(n)kl )P(v(n)kl |v(n)kl−1)

Qequiv(v
(n)
kl |v(n)kl−1, ykl)

kl−1�

j=(k−1)l

w(n)
j

Calculate w(n)
kl = P(ykl|v(n)kl )/

�
N�

n=1

P(ykl|v(n)kl )

�

If j + 1 = kl then draw v(n)kl ∼ Qequiv(vkl|v(n)kl−1, ykl)

i.e. Set v(n)j+1 = Ψ(v(n)j ) + α(n)ΣHT
�
HΣHT + Γ

�−1
�
yj+1 −HΨ(v(n)j )

�
+ ζ(n)j

Equivalent-weights proposal density:



   truth run from which the 
observations are generated
  particles

x-vari
able

y-variable

z-
va
ri
ab
le

Lorenz 63 - equivalent-weights particle filter



Equivalent weights particle filter - spread seen in model prior distribution
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Equivalent weights particle filter - spread also seen in posterior distribution
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Equivalent weights particle filter - both spread and mode of truth captured?
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Standard Particle Filter - filter degeneracy is evident

True model state Mean of particles
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SIR particle filter  compared to true 
model state at time step 50



Equivalent weights particle filter - 1/4 observations over the full state

True model state Mean of particles

• Every other variable is observed

• 32 particles

• Observations every 50 timesteps

• 1200 time steps



Spread now seen in the posterior pdfs

variable (93,65) variable (137,193) variable (177,65)
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Marginal posterior pdfs at time step 1150
Observations of every other variable

More work required to really assess whether these posterior 
representations match the true posterior pdf
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Weights of particles before resampling at time step 1150



Variance (Mean - Truth)2

Time step 600

Time step 1150

Similar patterns in spread - 1/4 obs
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Good spread in the ensemble judged over all time steps

Rank histogram - observation error perturbed model variables 
compared to observation

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

fre
qu

en
cy

ensemble member

Observations of every other variable



Equivalent weights particle filter - 1/4 observations over half the state
True model state Mean of particles

Time step 600

Time step 1150
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Individual particles -1/4 observations over half the state - time 1150

True model state

 

 

50 100 150 200 250

50

100

150

200

250

5

4

3

2

1

0

1

2

3

4

5

 

 

50 100 150 200 250

50

100

150

200

250

5

4

3

2

1

0

1

2

3

4

5

 

 

50 100 150 200 250

50

100

150

200

250

5

4

3

2

1

0

1

2

3

4

5

 

 

50 100 150 200 250

50

100

150

200

250

5

4

3

2

1

0

1

2

3

4

5
 

 

50 100 150 200 250

50

100

150

200

250

5

4

3

2

1

0

1

2

3

4

5

 

 

50 100 150 200 250

50

100

150

200

250

5

4

3

2

1

0

1

2

3

4

5



Multi-modal behaviour captured in posterior pdfs

Barotropic vorticity 19

on the tails of the posterior pdf through resampling. The

need to make this choice and the subsequent tuning of the

system is both a strength and a limitation of the equivalent-

weights particle filter. For the barotropic vorticity equation

80% was chosen but this may change when other models

are considered. Fixing the percentage of particles retained

at 80% means the factor b becomes a tuning parameter

which can be used to ensure the appropriate spread in the

ensemble.

4.4.3. Size of ensemble

As the size of the ensemble is increased, the distribution

of the marginal posterior pdf is not significantly impacted

(Fig. 13). Since all particles relax towards the observation,

increasing the number of ensemble members does not lead

to the same increase in variance as would be expected when

using the SIR filter. This is particularly noticeable when

observations are available for every other variable over the

entire state. In this case the marginal posterior pdf when 128

particles are used (Fig. 13(c)) is almost indistinguishable

from that generated using 512 particles (Fig. 13(e)).

4.5. Model error sensitivities

The results discussed in Section. 4.4, all relate to the

sensitivity of the equivalent-weights particle filter to the

parameter values chosen as part of the scheme. This section

considers the sensitivity of the filter to differences between

the parameters used to generate the ‘pseudo’ truth and those

used to generate the model runs. Since in real life the model

is an approximation to the true atmospheric evolution, this

allows us an insight on the impact of comparing model

runs created with chosen parameters, to observations taken

from the true atmosphere. In this case there are no actual

parameters in the barotropic vorticity equation which could

be altered to give a different model for comparison to the

truth. Hence instead the effect of changing the spread and

size of the random error is examined.
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Figure 13. The marginal posterior pdf of the variable at location (156,225)

and at time step 600 with 13(a), 13(b) 32, 13(c),13(d) 128, and 13(e),13(f)

512 particles. Observations are of every other variable over the entire state

(13(a), 13(c), 13(e)) and every other variable only over the left half of the

state (13(b), 13(d), 13(f)). In both cases the marginal posterior pdf is for

an unobserved variable, which is in the unobserved half of the state when

only half the state is observed. The green cross shows the truth and 80%

of particles were retained. Increasing the number of particles increases the

density of the pdf but the similarity between the posterior generated using

32 particles and that with 512 particles is clear.

4.5.1. Lengthscale in Q

The first parameter to be considered is the lengthscale used

in the covariance matrix Q defined in Section 4.1. If the

lengthscale of the truth is kept at five grid points and that of

the model increased to nine grid points, then the ensemble

becomes slightly over-dispersive (Fig. 14). The mean state

at time step 600 fails to capture some of the finer detail of

the truth but is still clearly a good representation. This is
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{v(n)kl , w(n)
kl }Nn=1 �→ {v(n)(k+1)l, w

(n)
(k+1)l}

N
n=1

I(v(n)1 , . . . , v
(n)
kl ;Yk) =

k�

i=1

1

2

���Γ− 1
2 (yi −H(v(n)il ))

���
2
+

kl−1�

j=1

1

2

���Σ− 1
2 (v(n)j+1 −Ψ(v(n)j ))

���
2

v(n) = (v(n)1 , . . . , v(n)kl ) = argminv(n)I(v
(n)
1 , . . . , v(n)kl ;Yk) + (ζ(n)1 , . . . , ζ(n)kl )

Implicit particle filter

How to determine the new positions and weights of particles at 
time (k+1)l given the weights and positions at time kl?

Related to the optimal proposal density
Second option:

v
(n)
j+1 = Ψ(v(n)j ) + ΣHT

�
HΣHT + Γ

�−1
�
yj+1 −HΨ(v(n)j )

�
+ ζ(n)j

However, generalised to trajectories in time incorporating several observations

4D-Var with fixed initial condition



w(n)
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I(v(n)1 , . . . , vkl
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�
|J(v(n))|
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1
2 (yk −HΨ(v(n)kl−1))

���
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�

Implicit particle filter

optimal proposal density

Weight over one time step depends on maximum weight given 

Implicit particle filter

Weight for trajectory depends on MAP estimate and a Jacobian 
which depends on the way the random error is chosen 

Variance in weights depends on the variance of the  maximum 
weights possible given the initial conditions



w(n)
kl ∝ exp

�
−1

2

�
I(v(n)1 , . . . , vkl

(n);Yk)− Itarget
��

|J(v(n))|

I(v(n)1 , . . . , vkl
(n);Yk) = Itarget

Combine ideas of equivalent-weights and variational methods

Equivalent-weights with 4D-Var

Variance in weights now only depends on the way 
the random error is chosen

Trajectory is no longer chosen to minimise the cost function but rather to 
ensure it holds a specific value

Trajectory no longer has the maximum weight possible given the initial 
conditions but a chosen percentage of particles will now all have 
significance when representing the posterior



Summary

Advantages:

P(vj |Yj) ≈
N�

n=1

w(n)
j δ(vj − v(n)j )

Particle filtering:

Disadvantages:
• fully nonlinear, so allow a representation 
of a potentially multi-modal posterior pdf.

• no need for an estimate of the state 
covariance, only model error covariance 
required.

• high variance in the weights leads to 
filter degeneracy, where only one particle 
has any significance in the posterior.

• filter degeneracy linked to the dimension 
of the system or the number of 
independent observations.

• because of this they are difficult to apply 
in lot of real life high dimensional 
applications.

High dimensional particle filters use the free choice of proposal density to try and 
sample particles from the posterior whose weights do not have high variance



Summary

Optimal proposal density

EnKF as proposal density

Implicit particle filter

Equivalent-weights particle filter

Filter degeneracy still occurs in 
high dimensional systems

• Good results seen, depending on the 
method for choosing the random error

•Further research required to determine 
whether filter degeneracy really is avoided 
with high numbers of observations

• Filter degeneracy is avoided by 
formulation

• Promising results that the posterior 
representation matches the true pdf, but 
further research required to fully determine 
this
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