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Unstable dynamical systems can be stabilized, and hence the
solution recovered from noisy data, provided:

Observe enough of the system: the unstable modes.
Weight the observed data sufficiently over the model.
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Dissipative Quadratic Dynamical Systems

A and B(·, ·) densely defined linear and bilinear forms on(
H, 〈·, ·〉, | · |

)
. f ∈ H.

(
V , ‖ · ‖

)
compact in H.

dv
dt

+ Av + B(v , v) = f , v(0) = u

Here

∃λ > 0 : 〈Aw ,w〉 ≥ λ‖w‖2, ∀w ∈ V ;

〈B(w ,w),w〉 = 0, ∀w ∈ V .

Introduce semigroup notation:

vj = v(jh), vj+1 = Ψ(vj).
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Filtering Problem

Projections:
P : H → H, Q = I − P.

Observations:

vj+1 = Ψ(vj).

yj = Pvj + ξj , ξj ∼ N(0, Γ), i .i .d .

Yj = {yi}ji=1.

Filtering Distribution: find P(vj |Yj).

Do we observe enough to accurately and stably recover the
signal? Interaction between P and the dynamics is key.
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Lorenz ’63

v̇1 = α(v2 − v1),

v̇2 = −αv1 − v2 − v1v3,

v̇3 = v1v2 − bv3 − b(r + α), vk (0) = uk

We will be interested in the choice:

P =

 1 0 0
0 0 0
0 0 0

 Q =

 0 0 0
0 1 0
0 0 1

 .
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Lorenz ’96

v̇k = vk−1

(
vk+1 − vk−2

)
− vk + f , k = 1, · · · ,K

v0 = vK , v−1 = vK−1, vK+1 = v1, vk (0) = uk .

We will be interested in the choice:

P =



1 0 0 · · · 0 · · · 0

0 1 0
. . . . . . . . . 0

0 0 0
. . . . . . . . . 0

0
. . . . . . . . . . . . . . . 0

0
. . . . . . . . . 1 0 0

0
. . . . . . . . . 0 1 0

0 · · · 0 · · · 0 0 0


.
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Navier-Stokes on a 2D Torus

2D Navier-Stokes as ODE on H :

H =
{

u ∈ L2(T2)
∣∣∣∇ · u = 0,

∫
T2

u dx = 0
}
, norm | · |.

dv
dt

+ νAv + F (v) = f , v(0) = u.

Let Aϕk = λkϕk and define

P : H 7→
{
ϕk (x), |k |2 ≤ λ

4π2

}
,

Q : H 7→
{
ϕk (x), |k |2 > λ

4π2

}
.
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3DVAR: Approximate Gaussian Filter

Impose the (3DVAR) Gaussian approximation:

P(vj |Yj) ≈ N
(
m̂j , Ĉ

)
7→ P(vj+1|Yj) ≈ N

(
Ψ(m̂j),C

)
P(vj+1|Yj) ≈ N

(
Ψ(m̂j),C

)
7→ P(vj+1|Yj+1) ≈ N

(
m̂j+1, Ĉ

)
.

Kalman Mean Update:

m̂j+1 = (I − K P)Ψ(m̂j) + Kyj+1.

Kalman Covariance Update:

K = CP∗(PCP∗ + Γ)−1, Ĉ = (I − K P)C.
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PROBLEM and EXAMPLES ALGORITHM CONTINUOUS TIME LIMIT NAVIER-STOKES EXAMPLE CONCLUSIONS

Intuition for Stabilization via Data

vj+1 = Ψ(vj)

vj+1 = (I − K P)Ψ(vj) + K PΨ(vj)

m̂j+1 = (I − K P)Ψ(m̂j) + Kyj+1

m̂j+1 = (I − K P)Ψ(m̂j) + K PΨ(vj) + K ξj+1.

m̂j+1 − vj+1 = (I − K P)
(

Ψ(m̂j)−Ψ(vj)
)

+ K ξj+1.
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Unstable
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Stabilized
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Parameter Scalings

Γ = ε2

h Γ0 and C = ε2rC0;

yj+1 :=
(

zj+1−zj
h

)
;

yj = Pvj + ξj ;

ξj ∼ ε√
h
N(0, Γ0).

K = rC0P∗
(

rPC0P∗ + 1
h Γ0

)−1
.
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Diffusion Limit

Formal expansion of the 3DVAR filter in h gives:

m̂j+1 =
(

I − hrC0P∗(hrPC0P∗ + Γ0)−1P
)

Ψ(m̂j)

+ hrC0P∗(hrPC0P∗ + Γ0)−1
(zj+1 − zj

h

)
≈ m̂j − h

(
Am̂ + B(m̂, m̂)− f

)
+ hrC0P∗Γ−1

0

(zj+1 − zj

h
− Pm̂j

)
.

The data z evolves according to

zj+1 = zj + hPvj + ε
√

hN(0, Γ0).
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SPDE Limit

Formal diffusion limit. With m̂(0) = m̂0 we have

dm̂
dt

+ Am̂ + B(m̂, m̂) + rC0P∗Γ−1
0

(
Pm̂ − dz

dt

)
= f ,

where, with z(0) = 0, the data z solves

dz
dt

= Pv + ε
√

Γ0P
dW
dt

.

Thus

dm̂
dt

+ Am̂ + B(m̂, m̂) + rC0P∗Γ−1
0 P

(
m̂ − v

)
=

f + rεC0P∗Γ−1/2
0 P

dW
dt

.
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Accuracy and Stability Theorem

For all three examples (and others) we have:

Theorem
Assume that:

supt≥0‖v(t)‖2 = R.

Then, for r sufficiently large (depending on R) there is γ, c > 0
such that

E|m̂(t)− v(t)|2 ≤ exp(−γt)‖m̂(0)− v(0)‖2 + cε.
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Proof of Accuracy/Stability Theorem

dv
dt

+ Av + B(v , v) = f ,

dm̂
dt

+ Am̂ + B(m̂, m̂) + rO1P
(
m̂ − v

)
= f + εO2P

dW
dt

.

Define e = m̂ − v and find:

de
dt

+ Ae + 2B(e, v) + B(e,e) + rO1Pe = εO2P
dW
dt

.
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Applying the Accuracy/Stability Theorem

For all examples ∃, for r sufficiently large, γ > 0:

2|〈B(a, v),a〉| ≤ 〈Aa,a〉+ r〈O1Pa,a〉 − 1
2
γ|a|2

Application of the Itô formula (need trace class condition on the
noise if we observe everything for NSE) gives

d
dt

E|e(t)|2 ≤ −γ · E|e(t)|2 + cεγ.
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Applying Main Theorem

C0 = A−2ζ (Model covariance);
Γ0 = A−2β (Observation covariance);
define α = ζ − β ∈ R.
NSE Nonlinearity estimate:

〈F (a)− F (b),a− b〉 ≤ 1
2

K‖b‖2|a− b|2 +
ν

2
‖a− b‖2.

interpolation: 1
2γ|h|

2 ≤ r〈PA−2αh,h〉+ ν
2‖h‖

2 ∀h ∈ V .
trace class noise: trace(A−4α−2β) = c <∞.
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Applying Main Theorem

The interpolation inequality reveals restrictions on γ:

1
2
γ|h|2 ≤ r〈A−2αh,h〉+

1
2
ν‖h‖2 for all h ∈ PV

1
2
γ ≤ r

|k |4α
+

1
2
ν|k |2 for all |k |2 < λ/4π2.

γ|h|2 ≤ 〈rA−2αPh,h〉+ ν|h‖2 for all h ∈ QV

γ ≤ ν|k |2 for all |k |2 ≥ λ1/4π2.

Need to choose λ, r so that

KR < γ ≤ min
{ νλ

4π2 , c(ν2αr)1/(2α+1)
}
.
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SPDE Unstable
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SPDE Stable
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SPDE Inaccurate
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SPDE Accurate
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SPDE Pullback
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Conclusions

Approximate filters are routinely used in geophysical
applications.

They fail to reproduce covariance but can accurately track
the mean.

Observe enough unstable dynamics.

Model variance inflation: trust the observations.

SPDE in high frequency in time limit.

Future work: ExKF, EnKF.
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