The 3DVAR Filter for Dissipative Systems

Kody J.H. Law¹

¹Mathematics Institute and Centre for Scientific Computing University of Warwick

KAUST, Thuwal, SA, February 11th, 2013

Funded by EPSRC, ONR, and ESA

PROBLEM and EXAMPLES ALGORITHM CONTINUOUS TIME LIMIT NAVIER-STOKES EXAMPLE CONCLUSIONS

Orientation

- [BLLMSS11]: C. Brett, A. Lam, K.J.H. Law, D. McCormick, M. Scott and A.M. Stuart. "Accuracy and Stability of Filters for Dissipative PDEs". PhysicaD 245(2013), 34–45. http://arxiv.org/abs/1110.2527
- [BLSZ12] D. Blömker, K.J.H. Law, A.M. Stuart and K.Zygalakis. "Accuracy and Stability of The Continuous-Time 3DVAR Filter for The Navier-Stokes Equation". http://arxiv.org/abs/1210.1594
- [BSS13] K.J.H. Law, A. Shukla and A.M. Stuart. "Analysis of the 3DVAR Filter for the Partially Observed Lorenz '63 Model". http://arxiv.org/abs/1212.4923

Unstable dynamical systems can be stabilized, and hence the solution recovered from noisy data, provided:

- Observe enough of the system: the unstable modes.
- Weight the observed data sufficiently over the model.

Outline

- PROBLEM and EXAMPLES
- 2 ALGORITHM
- CONTINUOUS TIME LIMIT
- **4** NAVIER-STOKES EXAMPLE
- **6** CONCLUSIONS

Outline

- PROBLEM and EXAMPLES
- 2 ALGORITHM
- CONTINUOUS TIME LIMIT
- 4 NAVIER-STOKES EXAMPLE
- 5 CONCLUSIONS

Dissipative Quadratic Dynamical Systems

A and $B(\cdot, \cdot)$ densely defined linear and bilinear forms on $(H, \langle \cdot, \cdot \rangle, |\cdot|)$. $f \in H$. $(V, ||\cdot||)$ compact in H.

$$\frac{dv}{dt} + Av + B(v, v) = f, \quad v(0) = u$$

Here

$$\exists \lambda > 0: \langle Aw, w \rangle \ge \lambda ||w||^2, \quad \forall w \in V;$$

 $\langle B(w, w), w \rangle = 0, \quad \forall w \in V.$

Introduce semigroup notation:

$$v_i = v(jh), \qquad v_{i+1} = \Psi(v_i)$$

Dissipative Quadratic Dynamical Systems

A and $B(\cdot, \cdot)$ densely defined linear and bilinear forms on $(H, \langle \cdot, \cdot \rangle, |\cdot|)$. $f \in H$. $(V, ||\cdot||)$ compact in H.

$$\frac{dv}{dt} + Av + B(v, v) = f, \quad v(0) = u$$

Here

$$\exists \lambda > 0: \quad \langle Aw, w \rangle \ge \lambda ||w||^2, \quad \forall w \in V; \\ \langle B(w, w), w \rangle = 0, \quad \forall w \in V.$$

Introduce semigroup notation:

$$v_i = v(jh), \qquad v_{j+1} = \Psi(v_j)$$

Dissipative Quadratic Dynamical Systems

A and $B(\cdot, \cdot)$ densely defined linear and bilinear forms on $(H, \langle \cdot, \cdot \rangle, |\cdot|)$. $f \in H$. $(V, ||\cdot||)$ compact in H.

$$\frac{dv}{dt} + Av + B(v, v) = f, \quad v(0) = u$$

Here

$$\exists \lambda > 0: \quad \langle Aw, w \rangle \ge \lambda ||w||^2, \quad \forall w \in V; \\ \langle B(w, w), w \rangle = 0, \quad \forall w \in V.$$

Introduce semigroup notation:

$$v_i = v(jh), \qquad v_{i+1} = \Psi(v_i).$$

Filtering Problem

Projections:

$$P: H \rightarrow H, Q = I - P.$$

Observations:

$$y_{j+1} = \Psi(v_j).$$

 $y_j = Pv_j + \xi_j, \quad \xi_j \sim N(0, \Gamma), i.i.d.$
 $Y_j = \{y_i\}_{i=1}^{j}.$

Filtering Distribution: find $\mathbb{P}(v_i|Y_i)$

Do we observe enough to accurately and stably recover the signal? Interaction between *P* and the dynamics is key.

Filtering Problem

Projections:

$$P: H \rightarrow H, Q = I - P.$$

Observations:

$$v_{j+1} = \Psi(v_j).$$

 $y_j = Pv_j + \xi_j, \quad \xi_j \sim N(0, \Gamma), i.i.d.$
 $Y_j = \{y_i\}_{i=1}^{j}.$

Filtering Distribution: find $\mathbb{P}(v_i|Y_i)$.

Do we observe enough to accurately and stably recover the signal? Interaction between *P* and the dynamics is key.

Filtering Problem

Projections:

$$P: H \rightarrow H, Q = I - P.$$

Observations:

$$v_{j+1} = \Psi(v_j).$$

 $y_j = Pv_j + \xi_j, \quad \xi_j \sim N(0, \Gamma), i.i.d.$
 $Y_j = \{y_i\}_{i=1}^{j}.$

Filtering Distribution: find $\mathbb{P}(v_i|Y_i)$.

Do we observe **enough** to accurately and stably recover the signal? Interaction between *P* and the dynamics is key.

Lorenz '63

$$\dot{v}_1 = \alpha(v_2 - v_1),
\dot{v}_2 = -\alpha v_1 - v_2 - v_1 v_3,
\dot{v}_3 = v_1 v_2 - b v_3 - b(r + \alpha), \quad v_k(0) = u_k$$

We will be interested in the choice:

$$P = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) \quad Q = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Lorenz '96

$$\dot{v}_k = v_{k-1} \left(v_{k+1} - v_{k-2} \right) - v_k + f, \quad k = 1, \dots, K
v_0 = v_K, \quad v_{-1} = v_{K-1}, \quad v_{K+1} = v_1, \quad v_k(0) = u_k.$$

We will be interested in the choice:

Navier-Stokes on a 2D Torus

2D Navier-Stokes as ODE on H:

$$H=\Big\{u\in L^2(\mathbb{T}^2)\Big|\nabla\cdot u=0, \int_{\mathbb{T}^2}u\,dx=0\Big\}, \text{ norm }|\cdot|.$$

$$\frac{dv}{dt} + \nu Av + F(v) = f, \quad v(0) = u.$$

Let $A\varphi_k = \lambda_k \varphi_k$ and define

$$P: H \mapsto \left\{ \varphi_k(x), |k|^2 \le \frac{\lambda}{4\pi^2} \right\},$$

$$Q: H \mapsto \left\{ \varphi_k(x), |k|^2 > \frac{\lambda}{4\pi^2} \right\}.$$

Outline

- PROBLEM and EXAMPLES
- 2 ALGORITHM
- CONTINUOUS TIME LIMIT
- 4 NAVIER-STOKES EXAMPLE
- 5 CONCLUSIONS

3DVAR: Approximate Gaussian Filter

• Impose the (3DVAR) Gaussian approximation:

$$\begin{split} \mathbb{P}(v_j|Y_j) &\approx N\big(\widehat{m}_j, \widehat{C}\big) \mapsto \mathbb{P}(v_{j+1}|Y_j) \approx N\big(\Psi(\widehat{m}_j), C\big) \\ \mathbb{P}(v_{j+1}|Y_j) &\approx N\big(\Psi(\widehat{m}_j), C\big) \mapsto \mathbb{P}(v_{j+1}|Y_{j+1}) \approx N\big(\widehat{m}_{j+1}, \widehat{C}\big). \end{split}$$

Kalman Mean Update:

$$\widehat{m}_{j+1} = (I - KP)\Psi(\widehat{m}_j) + Ky_{j+1}.$$

Kalman Covariance Update:

$$K = CP^*(PCP^* + \Gamma)^{-1}, \quad \widehat{C} = (I - KP)C$$

3DVAR: Approximate Gaussian Filter

• Impose the (3DVAR) Gaussian approximation:

$$\begin{split} \mathbb{P}(v_j|Y_j) &\approx N\big(\widehat{m}_j, \widehat{C}\big) \mapsto \mathbb{P}(v_{j+1}|Y_j) \approx N\big(\Psi(\widehat{m}_j), C\big) \\ \mathbb{P}(v_{j+1}|Y_j) &\approx N\big(\Psi(\widehat{m}_j), C\big) \mapsto \mathbb{P}(v_{j+1}|Y_{j+1}) \approx N\big(\widehat{m}_{j+1}, \widehat{C}\big). \end{split}$$

Kalman Mean Update:

$$\widehat{m}_{j+1} = (I - KP)\Psi(\widehat{m}_j) + Ky_{j+1}.$$

Kalman Covariance Update:

$$K = CP^*(PCP^* + \Gamma)^{-1}, \quad \widehat{C} = (I - KP)C$$

3DVAR: Approximate Gaussian Filter

• Impose the (3DVAR) Gaussian approximation:

$$\begin{split} \mathbb{P}(v_j|Y_j) &\approx N\big(\widehat{m}_j, \widehat{C}\big) \mapsto \mathbb{P}(v_{j+1}|Y_j) \approx N\big(\Psi(\widehat{m}_j), C\big) \\ \mathbb{P}(v_{j+1}|Y_j) &\approx N\big(\Psi(\widehat{m}_j), C\big) \mapsto \mathbb{P}(v_{j+1}|Y_{j+1}) \approx N\big(\widehat{m}_{j+1}, \widehat{C}\big). \end{split}$$

Kalman Mean Update:

$$\widehat{m}_{j+1} = (I - KP)\Psi(\widehat{m}_j) + Ky_{j+1}.$$

• Kalman Covariance Update:

$$K = CP^*(PCP^* + \Gamma)^{-1}, \quad \widehat{C} = (I - KP)C.$$

Intuition for Stabilization via Data

$$v_{j+1} = \Psi(v_j)$$

$$v_{j+1} = (I - KP)\Psi(v_j) + \frac{KP\Psi(v_j)}{KP\Psi(v_j)}$$

$$\widehat{m}_{j+1} = (I - KP)\Psi(\widehat{m}_j) + Ky_{j+1}$$

$$\widehat{m}_{j+1} = (I - KP)\Psi(\widehat{m}_j) + KP\Psi(v_j) + K\xi_{j+1}.$$

$$\widehat{m}_{j+1} - v_{j+1} = (I - KP) (\Psi(\widehat{m}_j) - \Psi(v_j)) + K\xi_{j+1}.$$

Intuition for Stabilization via Data

$$egin{aligned} & v_{j+1} = \Psi(v_j) \ & v_{j+1} = (I - K\mathsf{P})\Psi(v_j) + K\mathsf{P}\Psi(v_j) \end{aligned}$$

$$\begin{split} \widehat{m}_{j+1} &= (I - KP)\Psi(\widehat{m}_j) + Ky_{j+1} \\ \widehat{m}_{j+1} &= (I - KP)\Psi(\widehat{m}_j) + KP\Psi(v_j) + K\xi_{j+1}. \end{split}$$

$$\widehat{m}_{j+1} - v_{j+1} = (I - KP) (\Psi(\widehat{m}_j) - \Psi(v_j)) + K\xi_{j+1}$$

Intuition for Stabilization via Data

$$egin{aligned} & v_{j+1} = \Psi(v_j) \ & v_{j+1} = (I - KP)\Psi(v_j) + KP\Psi(v_j) \end{aligned}$$

$$\widehat{m}_{j+1} = (I - KP)\Psi(\widehat{m}_j) + Ky_{j+1}$$

$$\widehat{m}_{j+1} = (I - KP)\Psi(\widehat{m}_j) + KP\Psi(v_j) + K\xi_{j+1}.$$

$$\widehat{m}_{j+1} - v_{j+1} = (I - KP) (\Psi(\widehat{m}_j) - \Psi(v_j)) + K\xi_{j+1}.$$

Unstable

Stabilized

Outline

- PROBLEM and EXAMPLES
- 2 ALGORITHM
- CONTINUOUS TIME LIMIT
- **4** NAVIER-STOKES EXAMPLE
- 5 CONCLUSIONS

Parameter Scalings

- $\Gamma = \frac{\epsilon^2}{h} \Gamma_0$ and $C = \epsilon^2 r C_0$;
- $y_{j+1} := \left(\frac{z_{j+1}-z_j}{h}\right);$
- $y_j = \mathsf{P} v_j + \xi_j;$
- $\xi_j \sim \frac{\epsilon}{\sqrt{h}} N(0, \Gamma_0)$.
- $K = rC_0P^*(rPC_0P^* + \frac{1}{h}\Gamma_0)^{-1}$.

Diffusion Limit

Formal expansion of the 3DVAR filter in h gives:

$$\begin{split} \widehat{m}_{j+1} &= \left(I - hrC_0 \mathsf{P}^* (hr\mathsf{P}C_0 \mathsf{P}^* + \Gamma_0)^{-1} \mathsf{P} \right) \Psi(\widehat{m}_j) \\ &+ hrC_0 \mathsf{P}^* (hr\mathsf{P}C_0 \mathsf{P}^* + \Gamma_0)^{-1} \left(\frac{z_{j+1} - z_j}{h}\right) \\ &\approx \widehat{m}_j - h \left(A\widehat{m} + B(\widehat{m}, \widehat{m}) - f\right) \\ &+ hrC_0 \mathsf{P}^* \Gamma_0^{-1} \left(\frac{z_{j+1} - z_j}{h} - \mathsf{P}\widehat{m}_j\right). \end{split}$$

The data z evolves according to

$$z_{j+1} = z_j + h P v_j + \epsilon \sqrt{h} N(0, \Gamma_0).$$

SPDE Limit

Formal diffusion limit. With $\widehat{m}(0) = \widehat{m}_0$ we have

$$\frac{d\widehat{m}}{dt} + A\widehat{m} + B(\widehat{m}, \widehat{m}) + rC_0 P^* \Gamma_0^{-1} \left(P\widehat{m} - \frac{dz}{dt} \right) = f,$$

where, with z(0) = 0, the data z solves

$$\frac{dz}{dt} = Pv + \epsilon \sqrt{\Gamma_0} P \frac{dW}{dt}.$$

Thus

$$\frac{d\widehat{m}}{dt} + A\widehat{m} + B(\widehat{m}, \widehat{m}) + rC_0 P^* \Gamma_0^{-1} P(\widehat{m} - v) = f + r\epsilon C_0 P^* \Gamma_0^{-1/2} P \frac{dW}{dt}.$$

Accuracy and Stability Theorem

For all three examples (and others) we have:

Theorem

Assume that:

$$\sup_{t>0}\|v(t)\|^2=R.$$

Then, for r sufficiently large (depending on R) there is $\gamma, c > 0$ such that

$$\mathbb{E}|\widehat{m}(t) - v(t)|^2 < \exp(-\gamma t) \|\widehat{m}(0) - v(0)\|^2 + c\epsilon.$$

Proof of Accuracy/Stability Theorem

$$\begin{split} \frac{dv}{dt} + Av + B(v, v) &= f, \\ \frac{d\widehat{m}}{dt} + A\widehat{m} + B(\widehat{m}, \widehat{m}) + rO_1P(\widehat{m} - v) &= f + \epsilon O_2P\frac{dW}{dt}. \end{split}$$

Define $e = \hat{m} - v$ and find:

$$\frac{de}{dt} + Ae + 2B(e, v) + B(e, e) + rO_1Pe = \epsilon O_2P\frac{dW}{dt}$$

Proof of Accuracy/Stability Theorem

$$\begin{split} \frac{dv}{dt} + Av + B(v, v) &= f, \\ \frac{d\widehat{m}}{dt} + A\widehat{m} + B(\widehat{m}, \widehat{m}) + rO_1P(\widehat{m} - v) &= f + \epsilon O_2P\frac{dW}{dt}. \end{split}$$

Define $e = \hat{m} - v$ and find:

$$\frac{de}{dt} + Ae + 2B(e, v) + B(e, e) + rO_1Pe = \epsilon O_2P\frac{dW}{dt}.$$

Applying the Accuracy/Stability Theorem

For all examples \exists , for r sufficiently large, $\gamma > 0$:

$$|2|\langle B(a,v),a\rangle| \leq \langle Aa,a\rangle + r\langle O_1Pa,a\rangle - \frac{1}{2}\gamma|a|^2$$

Application of the Itô formula (need trace class condition on the noise if we observe everything for NSE) gives

$$\frac{d}{dt}\mathbb{E}|e(t)|^2 \le -\gamma \cdot \mathbb{E}|e(t)|^2 + c\epsilon\gamma.$$

Applying the Accuracy/Stability Theorem

For all examples \exists , for r sufficiently large, $\gamma > 0$:

$$2|\langle B(a,v),a\rangle| \leq \langle Aa,a\rangle + r\langle O_1Pa,a\rangle - \frac{1}{2}\gamma|a|^2$$

Application of the Itô formula (need trace class condition on the noise if we observe everything for NSE) gives

$$\frac{d}{dt}\mathbb{E}|e(t)|^2 \leq -\gamma \cdot \mathbb{E}|e(t)|^2 + c\epsilon\gamma.$$

Outline

- PROBLEM and EXAMPLES
- 2 ALGORITHM
- 3 CONTINUOUS TIME LIMIT
- NAVIER-STOKES EXAMPLE
- **5** CONCLUSIONS

Applying Main Theorem

- $C_0 = A^{-2\zeta}$ (Model covariance);
- $\Gamma_0 = A^{-2\beta}$ (Observation covariance);
- define $\alpha = \zeta \beta \in \mathbb{R}$.
- NSE Nonlinearity estimate:

$$\langle F(a) - F(b), a - b \rangle \leq \frac{1}{2} K \|b\|^2 |a - b|^2 + \frac{\nu}{2} \|a - b\|^2.$$

- interpolation: $\frac{1}{2}\gamma|h|^2 \le r\langle PA^{-2\alpha}h,h\rangle + \frac{\nu}{2}||h||^2 \quad \forall h \in V.$
- trace class noise: trace($A^{-4\alpha-2\beta}$) = c < ∞ .

The interpolation inequality reveals restrictions on γ :

$$\begin{split} &\frac{1}{2}\gamma|h|^2 \leq r\langle A^{-2\alpha}h,h\rangle + \frac{1}{2}\nu\|h\|^2 &\quad \text{ for all } h \in \mathsf{P}\,V\\ &\frac{1}{2}\gamma \leq \frac{r}{|k|^{4\alpha}} + \frac{1}{2}\nu|k|^2 &\quad \text{ for all } |k|^2 < \lambda/4\pi^2. \end{split}$$

$$\gamma |h|^2 \le \langle rA^{-2\alpha}Ph, h \rangle + \nu |h||^2$$
 for all $h \in QV$
 $\gamma \le \nu |k|^2$ for all $|k|^2 \ge \lambda 1/4\pi^2$.

$$KR < \gamma \le \min\left\{\frac{\nu\lambda}{4\pi^2}, c(\nu^{2\alpha}r)^{1/(2\alpha+1)}\right\}$$

PROBLEM and EXAMPLES

The interpolation inequality reveals restrictions on γ :

$$\begin{split} &\frac{1}{2}\gamma|h|^2 \leq r\langle A^{-2\alpha}h,h\rangle + \frac{1}{2}\nu\|h\|^2 &\quad \text{ for all } h \in \mathsf{P}\,\mathsf{V} \\ &\frac{1}{2}\gamma \leq \frac{r}{|k|^{4\alpha}} + \frac{1}{2}\nu|k|^2 &\quad \text{ for all } |k|^2 < \lambda/4\pi^2. \end{split}$$

$$\begin{split} \gamma |h|^2 & \leq \langle r A^{-2\alpha} \mathsf{P} h, h \rangle + \nu |h||^2 \qquad \text{for all } h \in \mathsf{Q} V \\ \gamma & \leq \nu |k|^2 \qquad \text{for all } |k|^2 \geq \lambda 1/4\pi^2. \end{split}$$

$$KR < \gamma \le \min\left\{\frac{\nu\lambda}{4\pi^2}, c(\nu^{2\alpha}r)^{1/(2\alpha+1)}\right\}$$

Applying Main Theorem

The interpolation inequality reveals restrictions on γ :

$$\begin{split} &\frac{1}{2}\gamma|h|^2 \leq r\langle A^{-2\alpha}h,h\rangle + \frac{1}{2}\nu\|h\|^2 &\quad \text{for all } h \in \mathsf{P}\,V\\ &\frac{1}{2}\gamma \leq \frac{r}{|k|^{4\alpha}} + \frac{1}{2}\nu|k|^2 &\quad \text{for all } |k|^2 < \lambda/4\pi^2. \end{split}$$

$$\gamma |h|^2 \le \langle rA^{-2\alpha}Ph, h \rangle + \nu |h||^2$$
 for all $h \in QV$
 $\gamma \le \nu |k|^2$ for all $|k|^2 \ge \lambda 1/4\pi^2$.

Need to choose λ , r so that

$$KR < \gamma \le \min \left\{ \frac{\nu \lambda}{4\pi^2}, c(\nu^{2\alpha}r)^{1/(2\alpha+1)} \right\}.$$

SPDE Unstable

SPDE Stable

SPDE Inaccurate

SPDE Accurate

SPDE Pullback

Outline

- PROBLEM and EXAMPLES
- 2 ALGORITHM
- CONTINUOUS TIME LIMIT
- NAVIER-STOKES EXAMPLE
- **5** CONCLUSIONS

- Approximate filters are routinely used in geophysical applications.
- They fail to reproduce covariance but can accurately track the mean.
- Observe enough unstable dynamics.
- Model variance inflation: trust the observations.
- SPDE in high frequency in time limit.
- Future work: ExKF, EnKF.

- Approximate filters are routinely used in geophysical applications.
- They fail to reproduce covariance but can accurately track the mean.
- Observe enough unstable dynamics.
- Model variance inflation: trust the observations.
- SPDE in high frequency in time limit.
- Future work: ExKF, EnKF.

- Approximate filters are routinely used in geophysical applications.
- They fail to reproduce covariance but can accurately track the mean.
- Observe enough unstable dynamics.
- Model variance inflation: trust the observations.
- SPDE in high frequency in time limit.
- Future work: ExKF, EnKF.

- Approximate filters are routinely used in geophysical applications.
- They fail to reproduce covariance but can accurately track the mean.
- Observe enough unstable dynamics.
- Model variance inflation: trust the observations.
- SPDE in high frequency in time limit.
- Future work: ExKF, EnKF.

- Approximate filters are routinely used in geophysical applications.
- They fail to reproduce covariance but can accurately track the mean.
- Observe enough unstable dynamics.
- Model variance inflation: trust the observations.
- SPDE in high frequency in time limit.
- Future work: ExKF, EnKF.

- Approximate filters are routinely used in geophysical applications.
- They fail to reproduce covariance but can accurately track the mean.
- Observe enough unstable dynamics.
- Model variance inflation: trust the observations.
- SPDE in high frequency in time limit.
- Future work: ExKF, EnKF.

http://homepages.warwick.ac.uk/ ∼ masdr

• [LS11]: K.J.H.Law and A.M.Stuart. "Evaluating Data Assimilation Algorithms". Monthly Weather Review 140(2012), 3757–3782.

http://arxiv.org/abs/1107.4118

- [BLLMSS11]: C. Brett, A. Lam, K.J.H. Law, D. McCormick, M. Scott and A.M. Stuart. "Accuracy and Stability of Filters for Dissipative PDEs". PhysicaD 245(2013), 34–45. http://arxiv.org/abs/1110.2527
- [BLSZ12] D. Blömker, K.J.H. Law, A.M. Stuart and K.Zygalakis. "Accuracy and Stability of The Continuous-Time 3DVAR Filter for The Navier-Stokes Equation". http://arxiv.org/abs/1210.1594
- [BSS13] K.J.H. Law, A. Shukla and A.M. Stuart. "Analysis of the 3DVAR Filter for the Partially Observed Lorenz 63 Model". http://arxiv.org/abs/1212.4923

PROBLEM and EXAMPLES ALGORITHM CONTINUOUS TIME LIMIT NAVIER-STOKES EXAMPLE CONCLUSIONS

General References

- 4DVAR: Bennett A. "Inverse modeling of the ocean and atmosphere." CUP (2002).
- 3DVAR: Kalnay E. "Atmospheric modeling, data assimilation, and predictability." CUP (2003).
- FDF Majda A and Harlim J. "Filtering Complex Turbulent Systems." CUP (2011).
- Geophysical Applications Van Leeuwen, P.J. "Particle filtering in geophysical systems." Monthly Weather Review 137(2009), 4089–4114.
- ExKF Jazwinski A. "Stochastic processes and filtering theory." Academic Pr. (1970).
- EnKF Evensen G. "Data assimilation: the ensemble kalman filter." Springer Verlag. (2009).
- Key Early Paper Tarn, T.J. and Rassis, Y. "Observers for nonlinear stochastic systems." IEEE Trans. Aut. Cont. 21(1976).