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Unstable dynamical systems can be stabilized, and hence the
solution recovered from noisy data, provided:
@ Observe enough of the system: the unstable modes.

@ Weight the observed data sufficiently over the model. Y00
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PROBLEM and EXAMPLES

Dissipative Quadratic Dynamical Systems

A and B(-, ) densely defined linear and bilinear forms on
(H, CONE !). feH. (V, | - H) compact in H.
dv

E+Av+B(v,v):f, v(0)=u J
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PROBLEM and EXAMPLES

Dissipative Quadratic Dynamical Systems

A and B(-, ) densely defined linear and bilinear forms on
<H> CONE !). feH. (V, | - H) compact in H.

Z‘;+AV+B(V,V):f, v(0)=u J

Here

IAN>0: (Aw,w) > \|w|?, vYweV,
(B(w,w),w) =0, vYweV.

Introduce semigroup notation:

v=vih), v =v(y). J
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PROBLEM and EXAMPLES

Filtering Problem

Projections:
P.:-H—H Q=1I/-P.

Do we observe enough to accurately and stably recover the

signal? Interaction between P and the dynamics is key.
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PROBLEM and EXAMPLES

Filtering Problem

Projections:
P.:-H—H Q=1I/-P.

Observations:

Vip1 = \U(Vj)
yi=Pvi+¢&, &~ N(O,),iid.
Yi={y}_,.

Do we observe enough to accurately and stably recover the

signal? Interaction between P and the dynamics is key.
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PROBLEM and EXAMPLES

Filtering Problem

Projections:
P.:-H—H Q=1I/-P.

Observations:

Vipr = V(v).
yi=Pvi+¢, &~ N(O,T),iid.
Y= {YI}{':r
Filtering Distribution: find P(v;|Y;). J

Do we observe enough to accurately and stably recover the

signal? Interaction between P and the dynamics is key.
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PROBLEM and EXAMPLES

Lorenz '63

vi = a(va—w),
Vo

—aVy — Vo — Vi3,
\./3 = ViVo — bvg — b(r + Oé), Vk(O) = Uk

) |

We will be interested in the choice:

1 00
P=1000 Q=
0 0O

o O O
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PROBLEM and EXAMPLES

Lorenz '96

Vi :Vk—1<Vk+1_Vk—2)—Vk+f, k=1,.-- K

Vo= VK, Vo1 = VK1, Vki1=V1, V(0) = Ux.

We will be interested in the choice:

1 0 0 -~ 0 0
0 1 0 0
0 0 O 0
P=1o0 0
0 1 0 0
0 0 1 0
0 -~ 0 0 0 0 /)]




PROBLEM and EXAMPLES

Navier-Stokes on a 2D Torus

2D Navier-Stokes as ODE on H :

H:{ueLZ(TQ)IV-U:O,/TzudX:O},norm\-|.

dv
VAV (V) =1, v(0)=u. J

Let Apx = Akpk and define

P H {or(), KR < 7o
A
472

j

Q: H e {on(x), K2 >

()|
A

\
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ALGORITHM

3DVAR: Approximate Gaussian Filter

@ Impose the (3DVAR) Gaussian approximation:

P(v;|Y)) = N(m, C) — P(vj41]Y)) ~ N(W(A), C)

AP =



ALGORITHM

3DVAR: Approximate Gaussian Filter

@ Impose the (3DVAR) Gaussian approximation:

P(v;|Y)) = N(m, C) — P(vj41]Y)) ~ N(W(A), C)

@ Kalman Mean Update:

M1 = (1= KPYW(iiy) + Ky J

AP =



ALGORITHM

3DVAR: Approximate Gaussian Filter

@ Impose the (3DVAR) Gaussian approximation:

P(v;|Y)) = N(m, C) — P(vj41]Y)) ~ N(W(A), C)

~

@ Kalman Mean Update:

@ Kalman Covariance Update:

~

K = CP*(PCP*+TI)~', C=(/-KP)C.

A mwars



ALGORITHM

Intuition for Stabilization via Data

Vit = V(V))
Virr = (1= KP)W(v)) + KPW(v))
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Intuition for Stabilization via Data

Vit = V(V))
Virr = (1= KP)W(v)) + KPW(v))

M1 = (I — KP)W(my) + Kyji1
M1 = (I — KP)YW(m;) + KPY(v)) + K&y 1.

)



ALGORITHM

Intuition for Stabilization via Data

Vit = V(V))
Virr = (1= KP)W(v)) + KPW(v))

M1 = (I — KP)W(my) + Kyji1
M1 = (I — KP)YW(m;) + KPY(v)) + K&y 1.

A1 = vipr = (1= KP)(W(y) = W(1))) + Kgjoa.

)



Unstable

ALGORITHM

3DVAR,v=0.01, h=0.2

__lIm(t)~u" eI

-=-tr(r)
L. _t{0-B)r(-8)1

3DVAR,v=0.01, h=0.2, Re(ul‘z)
0.3 -m
—
0.2) N x Yy
0.1 M .
0
-0.1] \: x
-0.2]
0 1 2 3 4

=4 ()



Stabilized
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ALGORITHM

[3DVAR],v=0.01, h=0.2

__lIm(t)-ue P

-=-t(r)
. t1(-Br(-B )]
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CONTINUOUS TIME LIMIT
Parameter Scalings

o I'=<ryand C = ErCy;
° yj=Pvi+¢;
° &~ ﬁN(O, o).

@ K = rCyP* (rPCoP* + %ro)_1-
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CONTINUOUS TIME LIMIT

Diffusion Limit

Formal expansion of the 3DVAR filter in h gives:

Ayt = (1= hrCoP* (hrPCoP* + o) ~'P) w(Ay)

+ hrGoP* (hrPCoP” + o) ™! (41—

~ iy — h(AM + B(m, M) — f)
Z.

+ hrGoP'Ty" (2L =5 — piy).

h

)

The data z evolves according to

Zj11 = zj+ hPvj + eV hAN(0, Tp).

“a@ay
&, BGSA



CONTINUOUS TIME LIMIT

SPDE Limit

Formal diffusion limit. With m(0) = mg we have

~

dm ~ . ve1(pa~ 0Oz
— + A+ B(, M) + rCoP r01(Pm—E):f,

where, with z(0) = 0, the data z solves

az aw

Thus
(Z? + Am + B(m, m) + rCoP*T " P(Fn — v) =
aw oy

f+ reCoP*F(;VZPW. e



CONTINUOUS TIME LIMIT

Accuracy and Stability Theorem

For all three examples (and others) we have:

Theorem

Assume that:
supyol| V(D)2 = A.

Then, for r sufficiently large (depending on R) there is v,c > 0

such that

E|m(t) — v(t)P < exp(—)[1(0) — v(0)]2 + ce.

= ey
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Proof of Accuracy/Stability Theorem

CC,;‘;—i—AV—i—B(V,V):f,
1 & & & = w
d—m+Am+ B(m, m) + rO4P(m—v) = f+eOgPddt.

dt

)



Proof of Accuracy/Stability Theorem

CC,;‘;—i—AV—i—B(V,V):f,
IM | A+ B(in, ) + rOyP (1 — v) = f 4+ 0P 0.
at at
Define e = m — v and find:
C(;f + Ae+2B(e,v) + B(e,e) + rO1Pe = eOzPCithV.
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CONTINUOUS TIME LIMIT

Applying the Accuracy/Stability Theorem

For all examples 3, for r sufficiently large, v > 0:

2|(B(a, v), a)| < (Aa, &) + (O Pa, a) — %7|a|2 J
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CONTINUOUS TIME LIMIT

Applying the Accuracy/Stability Theorem

For all examples 3, for r sufficiently large, v > 0:

2|(B(a, v), a)| < (Aa, &) + (O Pa, a) — %7|a|2 J

Application of the 1t6 formula (need trace class condition on the
noise if we observe everything for NSE) gives

SEIe()P < — -Ele(t)? + ce. J
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NAVIER-STOKES EXAMPLE

Applying Main Theorem

Co = A~%¢ (Model covariance);

Mo = A~2# (Observation covariance);
define o« = (¢ — B € R.

NSE Nonlinearity estimate:

(F(a) ~ F(b),a~b) < JKI|bl?la~ b + 5la—bi?

interpolation: 3|h|? < r(PA=2*h, h) + 4||h||> Vhe V.
trace class noise: trace(A4*2%) = ¢ < 0.

=4 ()



NAVIER-STOKES EXAMPLE

Applying Main Theorem

The interpolation inequality reveals restrictions on ~:

%y\hﬁ < r(A’Zah hy + %thHz forallhe PV

1

57 < |k|4a - yykyZ for all |k|? < \/4x2.

Fay
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NAVIER-STOKES EXAMPLE

Applying Main Theorem

The interpolation inequality reveals restrictions on ~:

%y\hﬁ < r(A’Zah hy + %thHz forallhe PV

1

k|2 forall |k|? 472,
27—|k|4a+ y[ ] or all |k|© < \/4r

y|h? < (rA=2*Ph,h) +v|h|?  forallhe QV
y<wvlk|?  forall |k]> > \1/4x2.

Need to choose A, r so that

L)
vava

KR <~y < m|n{4—)\ c(v? r)1/(2a+1)}.
7T
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SPDE Unstable
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SPDE Sta
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SPDE Inaccurate
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SPDE Accurate
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NAVIER-STOKES EXAMPLE

SPDE Pullback
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CONCLUSIONS

Conclusions

@ Approximate filters are routinely used in geophysical
applications.
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CONCLUSIONS

Conclusions

@ Approximate filters are routinely used in geophysical
applications.

@ They fail to reproduce covariance but can accurately track
the mean.

@ Observe enough unstable dynamics.
@ Model variance inflation: trust the observations.
@ SPDE in high frequency in time limit.

@ Future work: ExKF, EnKF.
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