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Fiducial?

Fiducial inference was mentioned only briefly during my graduate

studies. I did not remember what it was about. The only think that

stuck in my mind was that it is “bad”.
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Fiducial?

Fiducial inference was mentioned only briefly during my graduate

studies. I did not remember what it was about. The only think that

stuck in my mind was that it is “bad”.

Oxford English Dictionary

adjective TECHNICAL (of a point or line) used as a fixed basis of

comparison.

ORIGIN from Latin fiducia ‘trust, confidence’

Merriam-Webster dictionary

1. taken as standard of reference a fiducial mark

2. founded on faith or trust

3. having the nature of a trust : FIDUCIARY
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Brief history of fiducial inference

Fisher (1930) introduced the idea of fiducial probability and

inference in an attempt to overcome what he saw as a serious

deficiency of the Bayesian approach to inference – use of a prior

distribution when no prior information was available.

r(ξ|x) = −
∂F (x|ξ)

∂ξ
.
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Brief history of fiducial inference

Fisher (1930) introduced the idea of fiducial probability and

inference in an attempt to overcome what he saw as a serious

deficiency of the Bayesian approach to inference – use of a prior

distribution when no prior information was available.

r(ξ|x) = −
∂F (x|ξ)

∂ξ
.

Fisher (1935) further elaborated on this idea. E.g., to eliminate

nuisance parameters he suggested substituting their fiducial

distribution. As an example he considered the inference for the

difference of two normal means – “Behrens-Fisher problem” .

Fall, 2012 – p.3/33



Brief history of fiducial inference

Fraser (1960) – structural inference
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Brief history of fiducial inference

Fraser (1960) – structural inference

Dawid and Stone (1982) theoretical results for simple

cases.

Bernard (1995) pivotal based methods.

Weerahandi (1989, 1993) generalized inference.

Hannig, Iyer, Patterson (2006) generalized inference is

closely related to fiducial inference & theoretical

properties.
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Related Modern Research

Dempster-Shafer calculus; Dempster (2008). Similar to fiducial

inference. Designed for discrete distributions; leads to upper and

lower probabilities.
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procedure (e.g., one sided CI for all possible confidence levels α)

to define a distribution on the parameter space.
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Related Modern Research

Dempster-Shafer calculus; Dempster (2008). Similar to fiducial

inference. Designed for discrete distributions; leads to upper and

lower probabilities.

Inferential Models; Liu, Martin and coworkers.

Confidence Distributions; Xie, Singh & Strawderman (2011),

Schweder & Hjort (2002) The idea is to use a frequentist

procedure (e.g., one sided CI for all possible confidence levels α)

to define a distribution on the parameter space.

Objective Bayesian inference; choice of π(θ) when we have no

prior info, e.g., reference prior Berger, Bernardo & Sun (2009).

With improper reference prior one needs to prove that the

posterior is a proper distribution on an individual basis.
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Bird’s Eye of Statistical Inference

We are given a data set X and are asked to provide

some information about the mechanism used to

generate it.
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Bird’s Eye of Statistical Inference

We are given a data set X and are asked to provide

some information about the mechanism used to

generate it.

Frequentist Inference

Assume that the data was generated using a model

P = {Pθ}θ∈×.

Goal is to find a Pθ ’s that best fit the data with possible some

additional considerations, e.g., sparsity.

Each statistical problem requires its own solution and the

quality of the solution is judged by repeated sampling

performance (Cournot’s principle).
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Bird’s Eye of Statistical Inference

Bayesian inference

It is assumed that the value theta θ ∈ Θ was generated using

some known distribution π(θ), prior, and we have only single,

fully known distribution Pθ · π(θ).
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Bird’s Eye of Statistical Inference

Bayesian inference

It is assumed that the value theta θ ∈ Θ was generated using

some known distribution π(θ), prior, and we have only single,

fully known distribution Pθ · π(θ).

The random variable θ is unobserved and needs to be

predicted, using standard statistical techniques – Bayes

theorem. The predictive distribution θ|X, posterior, has

subjective interpretation (de Finetti’s betting interpretation).

There is only one solution for each statistical problem. The

remaining problem specific issue is to find the solution

computationally and to select the right model + prior.
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Bird’s Eye of Statistical Inference

Fiducial inference

Multiple distribution P = {Pθ}θ∈Θ are considered (no prior,

but . . . ).
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Bird’s Eye of Statistical Inference

Fiducial inference

Multiple distribution P = {Pθ}θ∈Θ are considered (no prior,

but . . . ).

Goal is to find a distribution on the parameter space Θ that in

summarizes the information we have obtained from the data.

Philosophical interpretation of fiducial probability is obscure.

We use fiducial distribution to propose statistical methods

(e.g., confidence Intervals) and then evaluate the methods

using repeated sampling performance.

The fiducial distribution is usually not a posterior with respect

to any (data independent) prior (Grundy, 1956).
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The aim of this talk

We explain the definition of fiducial distribution as we
generalize it demonstrating it on several examples.
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The aim of this talk

We explain the definition of fiducial distribution as we
generalize it demonstrating it on several examples.

Applicable to both discrete and continuous distributions.

We attempt to strip down all layers of additional structure.

Our definition does not produce a "unique fiducial distribution".

Regardless, the fiducial distribution is always proper.

We proved some asymptotic theorems justifying this

method of deriving inference procedures. Simulations

usually show very good frequentist performance.
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Comparison to MLE

Density is the function f(x, ξ), where ξ is fixed and x is variable.
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Comparison to MLE

Density is the function f(x, ξ), where ξ is fixed and x is variable.

Likelihood is the function f(x, ξ), where ξ is variable and x is fixed.
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Comparison to MLE

Consider the data generating (structural) equation

X = T(U, ξ),

U is a random variable/vector with known distribution

ξ is a fixed parameter.

The distribution of the data X is implied from U via the

structural equation. I.e., one can generate X by generating U

and plugging it into the structural equation.
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x = T(U, ξ),

U is a random variable/vector with known distribution

ξ is a fixed parameter.

The distribution of the data X is implied from U via the

structural equation.

After observing X = x deduce a distribution for ξ from that of U

via the structural equation. I.e., generate ξ by generating U⋆,

plugging it into the structural equation and solving for ξ.
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Comparison to MLE

Consider the data generating (structural) equation

x = T(U, ξ),

U is a random variable/vector with known distribution

ξ is a fixed parameter.

The distribution of the data X is implied from U via the

structural equation.

After observing X = x deduce a distribution for ξ from that of U

via the structural equation. I.e., generate ξ by generating U⋆,

plugging it into the structural equation and solving for ξ.

If the solution does not exist, discard this value of U⋆, i.e.,

condition the distribution of U on the fact that the solution exists.
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Example – binomial

Let X1, . . . , Xn be i.i.d. Bernoulli(p). Therefore

Xi = I[0,p)(Ui), i = 1, . . . , n,

where Ui are i.i.d. uniform.
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Example – binomial

Let X1, . . . , Xn be i.i.d. Bernoulli(p). Therefore

Xi = I[0,p)(Ui), i = 1, . . . , n,

where Ui are i.i.d. uniform.

Define the inverse image of T

Q(x1, . . . , xn, u1, . . . , un) = {p : xi = I[0,p)(ui)} = (m,M), where

m = max
xi=1

ui;M = min
xi=0

ui
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Example – binomial

Let X1, . . . , Xn be i.i.d. Bernoulli(p). Therefore

Xi = I[0,p)(Ui), i = 1, . . . , n,

where Ui are i.i.d. uniform.

Define the inverse image of T

Q(x1, . . . , xn, u1, . . . , un) = {p : xi = I[0,p)(ui)} = (m,M), where

m = max
xi=1

ui;M = min
xi=0

ui

The fiducial distribution is

Q(x1, . . . , xn, U
⋆
1 , . . . , U

⋆
n) |Q(x1, . . . , xn, U

⋆
1 , . . . , U

⋆
n) 6= ∅

D
= (U⋆

(
∑

xi):n
, U⋆

(1+
∑

xi):n
)
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Example – binomial

Let X1, . . . , Xn be i.i.d. Bernoulli(p). Therefore

Xi = I[0,p)(Ui), i = 1, . . . , n,

where Ui are i.i.d. uniform.

Define the inverse image of T

Q(x1, . . . , xn, u1, . . . , un) = {p : xi = I[0,p)(ui)} = (m,M), where

m = max
xi=1

ui;M = min
xi=0

ui

The fiducial distribution is

Q(x1, . . . , xn, U
⋆
1 , . . . , U

⋆
n) |Q(x1, . . . , xn, U

⋆
1 , . . . , U

⋆
n) 6= ∅

D
= (U⋆

(
∑

xi):n
, U⋆

(1+
∑

xi):n
)

We need to select a point inside the interval. We recommend

selecting each edge with equal probability.
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Single Normal

Consider X = µ+ Z, where Z ∼ N(0, 1).
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Single Normal

Consider X = µ+ Z, where Z ∼ N(0, 1).

Observe X = 10. Then we have µ = 10− Z.

Though the value of Z is unknown, we know the

distribution of Z.

Fiducial argument:

P (µ = 3± dx) = P (10− Z = 3± dx) = P (Z = 7± dx) ≈ 1.83 · 10−11dx
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Single Normal

Consider X = µ+ Z, where Z ∼ N(0, 1).

Observe X = 10. Then we have µ = 10− Z.

Though the value of Z is unknown, we know the

distribution of Z.

Fiducial argument:

P (µ = 3± dx) = P (10− Z = 3± dx) = P (Z = 7± dx) ≈ 1.83 · 10−11dx

This introduces a distribution on µ.

We can simulate this distribution using Rµ = 10− Z⋆,

where Z⋆ ∼ N(0, 1) independent of Z.
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Location Normal

Consider Xi = µ+ Zi where Zi are i.i.d. N(0, 1).
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Location Normal

Consider Xi = µ+ Zi where Zi are i.i.d. N(0, 1).

Observe (x1, . . . , xn). We cannot simply follow the

previous idea of setting µ = x1 − Z⋆
1 , . . . , µ = xn − Z⋆

n.
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Observe (x1, . . . , xn). We cannot simply follow the
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Each equation would lead to a different µ!

Need to condition the distribution of (Z⋆
1 , . . . , Z

⋆
n) on the

event that all the equations have the same µ.
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Location Normal

Consider Xi = µ+ Zi where Zi are i.i.d. N(0, 1).

Observe (x1, . . . , xn). We cannot simply follow the

previous idea of setting µ = x1 − Z⋆
1 , . . . , µ = xn − Z⋆

n.

Each equation would lead to a different µ!

Need to condition the distribution of (Z⋆
1 , . . . , Z

⋆
n) on the

event that all the equations have the same µ.

The fiducial distribution can be defined as

x1 − Z⋆
1 |x2 = x1 − Z⋆

1 + Z⋆
2 , . . . , xn = x1 − Z⋆

1 + Z⋆
n.
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Location Normal

Consider Xi = µ+ Zi where Zi are i.i.d. N(0, 1).

Observe (x1, . . . , xn). We cannot simply follow the

previous idea of setting µ = x1 − Z⋆
1 , . . . , µ = xn − Z⋆

n.

Each equation would lead to a different µ!

Need to condition the distribution of (Z⋆
1 , . . . , Z

⋆
n) on the

event that all the equations have the same µ.

The fiducial distribution can be defined as

x1 − Z⋆
1 |x2 = x1 − Z⋆

1 + Z⋆
2 , . . . , xn = x1 − Z⋆

1 + Z⋆
n.

After simplification the fiducial distribution is N(x̄, 1/n).
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Location Normal

Consider Xi = µ+ Zi where Zi are i.i.d. N(0, 1).

Observe (x1, . . . , xn). We cannot simply follow the

previous idea of setting µ = x1 − Z⋆
1 , . . . , µ = xn − Z⋆

n.

Each equation would lead to a different µ!

Need to condition the distribution of (Z⋆
1 , . . . , Z

⋆
n) on the

event that all the equations have the same µ.

The fiducial distribution can be defined as

x1 − Z⋆
1 |x2 = x1 − Z⋆

1 + Z⋆
2 , . . . , xn = x1 − Z⋆

1 + Z⋆
n.

After simplification the fiducial distribution is N(x̄, 1/n).

We have non-uniqueness due to Borel paradox.
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Remarks

There are three challenges in the definition of

generalized fiducial distribution.
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generalized fiducial distribution.

The choice of data generating equation. For i.i.d.

data the Xi = F−1(Ui, ξ) is a good default choice.
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generalized fiducial distribution.

The choice of data generating equation. For i.i.d.

data the Xi = F−1(Ui, ξ) is a good default choice.

The choice among multiple solutions:

Arises if the inverse image Q(x, U⋆) has more

then one element but disappears asymptotically

for parametric problems.
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Remarks

There are three challenges in the definition of

generalized fiducial distribution.

The choice of data generating equation. For i.i.d.

data the Xi = F−1(Ui, ξ) is a good default choice.

The choice among multiple solutions:

Arises if the inverse image Q(x, U⋆) has more

then one element but disappears asymptotically

for parametric problems.

The conditioning on the fact that solution exist:

Arises if P{Q(x, U⋆) 6= ∅} = 0 – Borel paradox.

“Resolved by fat data”.

Fall, 2012 – p.14/33



Fat data

Borel paradox was caused by the fact that probability

of observing our data could be 0.
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data exactly.
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Fat data

Borel paradox was caused by the fact that probability

of observing our data could be 0.

Due to instrument limitations we never observe our

data exactly.

My height is 1.85 < xi < 1.86.

Any number stored on a computer is known only to

a machine precision.
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Fat data

Borel paradox was caused by the fact that probability

of observing our data could be 0.

Due to instrument limitations we never observe our

data exactly.

My height is 1.85 < xi < 1.86.

Any number stored on a computer is known only to

a machine precision.

We derive generalized fiducial distribution directly for

discretized data or take a limit as the discretization

refines.
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Fat data on a diet

Assume that the data vector x ∈ R
n has continuous

distribution with the parameter ξ ∈ R
p
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Fat data on a diet

Assume that the data vector x ∈ R
n has continuous

distribution with the parameter ξ ∈ R
p

Interpret fiducial recipe as the weak limit (as ε ↓ 0) of

arg min
ξ

‖x− T (U⋆, ξ)‖ | {min
ξ

‖x− T (U⋆, ξ)‖ < ε} (1)
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Assume that the data vector x ∈ R
n has continuous

distribution with the parameter ξ ∈ R
p

Interpret fiducial recipe as the weak limit (as ε ↓ 0) of

arg min
ξ

‖x− T (U⋆, ξ)‖ | {min
ξ

‖x− T (U⋆, ξ)‖ < ε} (1)

The condition in (1) uses data fattened to a ball

Bε(x) = {y : ‖x− y‖ < ε}

Fall, 2012 – p.16/33



Fat data on a diet

Assume that the data vector x ∈ R
n has continuous

distribution with the parameter ξ ∈ R
p

Interpret fiducial recipe as the weak limit (as ε ↓ 0) of

arg min
ξ

‖x− T (U⋆, ξ)‖ | {min
ξ

‖x− T (U⋆, ξ)‖ < ε} (1)

The condition in (1) uses data fattened to a ball

Bε(x) = {y : ‖x− y‖ < ε}

Similar to the idea of ABC; generating from prior

replaced by min.
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Theoretical results

If using ‖ ‖∞ and smooth T the limiting conditional

distribution (1) has density (Hannig, 2012)

r(ξ|x) =
fX(x|ξ)J(x, ξ)

∫

Ξ
fX(x|ξ′)J(x, ξ′) dξ′

,
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Theoretical results

If using ‖ ‖∞ and smooth T the limiting conditional

distribution (1) has density (Hannig, 2012)

r(ξ|x) =
fX(x|ξ)J(x, ξ)

∫

Ξ
fX(x|ξ′)J(x, ξ′) dξ′

,

where J(x, ξ) =
∑

i=(i1,...,ip)

∣

∣

∣

∣

det

(

d
dξ

T(u, ξ)
∣

∣

∣

u=T−1(x,ξ)

)

i

∣

∣

∣

∣

and (A)
i

is the p× p matrix comprising of the i1, . . . , ipth row of

the n× p matrix A.
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Comments

Let Xi = F−1(ξ, Ui) be cont. with density f(x|ξ).

Then J(x, ξ) =
∑

i=(i1,...,ip)

|det( d
dξ

F(xi,ξ))|
∏

i
f(xi,ξ)
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Comments

Let Xi = F−1(ξ, Ui) be cont. with density f(x|ξ).

Then J(x, ξ) =
∑

i=(i1,...,ip)

|det( d
dξ

F(xi,ξ))|
∏

i
f(xi,ξ)

Often
(

n

p

)−1
J(x, ξ) → Eξ0

|det( d
dξ

F(Xi,ξ))|
∏

i f(xi,ξ)
providing an

empirical Bayes interpretation.
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Comments

Let Xi = F−1(ξ, Ui) be cont. with density f(x|ξ).

Then J(x, ξ) =
∑

i=(i1,...,ip)

|det( d
dξ

F(xi,ξ))|
∏

i
f(xi,ξ)

Often
(

n

p

)−1
J(x, ξ) → Eξ0

|det( d
dξ

F(Xi,ξ))|
∏

i f(xi,ξ)
providing an

empirical Bayes interpretation.

Confidence intervals based on generalized fiducial

distribution are often correct asymptotically because of

“Bernstein-von Mises” theorem for fiducial distributions

Hannig (2009, 2012), Sonderegger & Hannig (2012).
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Theoretical result for discretized data

Assume structural equation Xi = F−1(Ui, ξ)

ξ is p dimensional and Ui are i.i.d. U(0, 1).

F (x, ξ) is continuously differentiable in ξ for all x

(F (x1, ξ), . . . , F (xp, ξ)) = (u1, . . . , up), taken as a function of ξ

is one to one for each x.
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Theoretical result for discretized data

Assume structural equation Xi = F−1(Ui, ξ)

ξ is p dimensional and Ui are i.i.d. U(0, 1).

F (x, ξ) is continuously differentiable in ξ for all x

(F (x1, ξ), . . . , F (xp, ξ)) = (u1, . . . , up), taken as a function of ξ

is one to one for each x.

Data were discretized to a fixed partition
(−∞, a1], (a1, a2], . . . , (ak,∞).

P (X ∈ (aj , aj+1]) > 0 for all j.

For all j ⊂ {1, . . . , k}, the Jacobian det
(

dF (aj,ξ0)
dξ

)

6= 0.
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Theoretical result for discretized data

Assume structural equation Xi = F−1(Ui, ξ)

ξ is p dimensional and Ui are i.i.d. U(0, 1).

F (x, ξ) is continuously differentiable in ξ for all x

(F (x1, ξ), . . . , F (xp, ξ)) = (u1, . . . , up), taken as a function of ξ

is one to one for each x.

Data were discretized to a fixed partition
(−∞, a1], (a1, a2], . . . , (ak,∞).

P (X ∈ (aj , aj+1]) > 0 for all j.

For all j ⊂ {1, . . . , k}, the Jacobian det
(

dF (aj,ξ0)
dξ

)

6= 0.

Theorem (Hannig (2012)). Confidence sets based on the generalized

fiducial distribution will have asymptotically correct coverage as number

of data points goes to infinity and resolution remains fixed.
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Model Selection

Consider several models (Mi)i∈I , each with data generating

equation X = Ti(U, ξ), i ∈ I .
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Model Selection

Consider several models (Mi)i∈I , each with data generating

equation X = Ti(U, ξ), i ∈ I .

If all models have the same dimension (number of parameters),

the marginal distribution of ith model is

r(Mi) ∝

∫

Ξ

fi(x|ξ)Ji(x, ξ) dξ,

where fi and Ji were computed using the ith model.
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Model Selection

Consider several models (Mi)i∈I , each with data generating

equation X = Ti(U, ξ), i ∈ I .

If all models have the same dimension (number of parameters),

the marginal distribution of ith model is

r(Mi) ∝

∫

Ξ

fi(x|ξ)Ji(x, ξ) dξ,

where fi and Ji were computed using the ith model.

When the number of parameters is different, penalty is needed.

r(Mi) ∝ e−q(i)

∫

Ξ

fi(x|ξ)Ji(x, ξ) dξ;

we choose the Minimum Description Length penalty for q(i).
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Model Selection

Consider several models (Mi)i∈I , each with data generating

equation X = Ti(U, ξ), i ∈ I .

If all models have the same dimension (number of parameters),

the marginal distribution of ith model is

r(Mi) ∝

∫

Ξ

fi(x|ξ)Ji(x, ξ) dξ,

where fi and Ji were computed using the ith model.

When the number of parameters is different, penalty is needed.

r(Mi) ∝ e−q(i)

∫

Ξ

fi(x|ξ)Ji(x, ξ) dξ;

we choose the Minimum Description Length penalty for q(i).

Wandler & Hannig (2011, 2012) shows consistency for various

multivariate normal model.
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Key comparison

National laboratories of various countries e.g, NIST,

NPL, carry out interlaboratory trials to evaluate the

relative measurement capabilities of each other and

also establish standard reference values.
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also establish standard reference values.

Fo simplicity assume, each laboratory reports a

confidence interval based on a T distribution,

measuring the same object.
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Key comparison

National laboratories of various countries e.g, NIST,

NPL, carry out interlaboratory trials to evaluate the

relative measurement capabilities of each other and

also establish standard reference values.

Fo simplicity assume, each laboratory reports a

confidence interval based on a T distribution,

measuring the same object.

Goal is to combine the intervals in a way that down

ways potential outliers. Outright dropping of odd

results is politically not feasible.
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Key comparison - our solution

All possible subsets of laboratories are considered as measuring

the correct values with the rest considered as outliers.
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Key comparison - our solution

All possible subsets of laboratories are considered as measuring

the correct values with the rest considered as outliers.

For each model the fiducial distributions measuring the true value
are combined using Hannig & Xie (2012) and the fiducial model
probability is computed.

r(µ) ∝
∑

j∈I

C(Mj)
∑

i∈Mj

{

1

ni
+

(µ− x̄i)
2

(ni − 1)s2i

}−1/2
∏

i∈Mj

{

1 +
ni(µ− x̄i)

2

(ni − 1)s2i

}−(ni−1)/2

× e−(k−|Mi||) log(SSE)/2
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Key comparison - our solution

All possible subsets of laboratories are considered as measuring

the correct values with the rest considered as outliers.

For each model the fiducial distributions measuring the true value
are combined using Hannig & Xie (2012) and the fiducial model
probability is computed.

r(µ) ∝
∑

j∈I

C(Mj)
∑

i∈Mj

{

1

ni
+

(µ− x̄i)
2

(ni − 1)s2i

}−1/2
∏

i∈Mj

{

1 +
ni(µ− x̄i)

2

(ni − 1)s2i

}−(ni−1)/2

× e−(k−|Mi||) log(SSE)/2

Preliminary simulation using importance sampling shows

somewhat conservative performance.
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Key comparison - example
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Example - Linear Mixed Model

Modern linear mixed models can be traced back to Fisher (1935)

and Bartlet (1937).
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and Bartlet (1937).

Point estimation has a unified approach that works well and is

widely used in practice (REML) Patterson & Thompson (1971).
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Example - Linear Mixed Model

Modern linear mixed models can be traced back to Fisher (1935)

and Bartlet (1937).

Point estimation has a unified approach that works well and is

widely used in practice (REML) Patterson & Thompson (1971).

There seems to be no (non-Bayesian) unified approach producing

good quality confidence sets. Most procedures in the literature

are designed to solve special cases Burdick, Graybill, Wang or

use insufficient statistics Khuri, Mathews and Sinha.
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Example - Linear Mixed Model

Modern linear mixed models can be traced back to Fisher (1935)

and Bartlet (1937).

Point estimation has a unified approach that works well and is

widely used in practice (REML) Patterson & Thompson (1971).

There seems to be no (non-Bayesian) unified approach producing

good quality confidence sets. Most procedures in the literature

are designed to solve special cases Burdick, Graybill, Wang or

use insufficient statistics Khuri, Mathews and Sinha.

We will propose a procedure that produces confidence sets for

large class of linear mixed models. Additionally it allows for

discretized data.
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Linear Mixed Model

Consider a structural equation

Y = Xβ +
k

∑

i=1

σi

lk
∑

j=1

Vi,jZi,j
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Linear Mixed Model

Consider a structural equation

Y = Xβ +
k

∑

i=1

σi

lk
∑

j=1

Vi,jZi,j

Y observations, X design matrix, β fixed effect parameters

k number of random effects, lk number of levels per effect,

Vi,j var component design vectors, σ2
i variance of the ith effect

Zi,j i.i.d. N(0, 1)
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Linear Mixed Model

Consider a structural equation

Y = Xβ +
k

∑

i=1

σi

lk
∑

j=1

Vi,jZi,j

Y observations, X design matrix, β fixed effect parameters

k number of random effects, lk number of levels per effect,

Vi,j var component design vectors, σ2
i variance of the ith effect

Zi,j i.i.d. N(0, 1)

Contains a wide variety of linear mixed models.
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Linear Mixed Model

Y = Xβ +
k

∑

i=1

σi

lk
∑

j=1

Vi,jZi,j

Linear regression

k = 1, l1 = n, V1,· = (V1,1, . . . , V1,n) = I

m regression coefficients, σ2
1 error variance
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Linear Mixed Model

Y = Xβ +
k

∑

i=1

σi

lk
∑

j=1

Vi,jZi,j

Linear regression

k = 1, l1 = n, V1,· = (V1,1, . . . , V1,n) = I

m regression coefficients, σ2
1 error variance

One way random effects model

X = 1, k = 2, l1 number of levels for random effect, l2 = n,

V1,i indicates which observations are in group i, V2,· = I

m overall mean, σ2
1 random effect variance, σ2

2 error variance
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Linear Mixed Model

Assume we observe a ≤ Y ≤ b
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Linear Mixed Model

Assume we observe a ≤ Y ≤ b

We can generate Z⋆
i,j as i.i.d. N(0,1) and solve for β, σ

– linear programming problem
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Linear Mixed Model

Assume we observe a ≤ Y ≤ b

We can generate Z⋆
i,j as i.i.d. N(0,1) and solve for β, σ

– linear programming problem

The conditioning implies, we need to exclude all Z⋆
i,j for

which there is no solution.
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The conditioning implies, we need to exclude all Z⋆
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which there is no solution.

Need an efficient algorithm for generating such Z.
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Linear Mixed Model

Assume we observe a ≤ Y ≤ b

We can generate Z⋆
i,j as i.i.d. N(0,1) and solve for β, σ

– linear programming problem

The conditioning implies, we need to exclude all Z⋆
i,j for

which there is no solution.

Need an efficient algorithm for generating such Z.

Possibilities include
Gibbs sampler – does not mix well if there is too much precision.

Simulated tampering – works but slow

We proposed a particular implementation of Sequential Monte Carlo algorithm

– works well if the number of parameters is reasonable (< 10).
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Simulation study

One-way random effects: Yijk = µ+ αi + ǫij

(µ fixed, α and ǫ are independent and ∼ Normal)
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Simulation study

One-way random effects: Yijk = µ+ αi + ǫij

(µ fixed, α and ǫ are independent and ∼ Normal)

Two-fold nested: Yijk = µ+ αi + βij + ǫijk

(µ fixed, α, β and ǫ are independent and ∼ Normal)
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Simulation study

One-way random effects: Yijk = µ+ αi + ǫij

(µ fixed, α and ǫ are independent and ∼ Normal)

Two-fold nested: Yijk = µ+ αi + βij + ǫijk

(µ fixed, α, β and ǫ are independent and ∼ Normal)

Two-factor crossed design with interaction:

Yijk = µ+ αi + βj + (αβ)ij + ǫijk

(µ fixed, α, β, (αβ), and ǫ are independent and ∼

Normal)
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Simulation study

One-way random effects: Yijk = µ+ αi + ǫij

(µ fixed, α and ǫ are independent and ∼ Normal)

Two-fold nested: Yijk = µ+ αi + βij + ǫijk

(µ fixed, α, β and ǫ are independent and ∼ Normal)

Two-factor crossed design with interaction:

Yijk = µ+ αi + βj + (αβ)ij + ǫijk

(µ fixed, α, β, (αβ), and ǫ are independent and ∼

Normal)

We considered a number of models with various levels

of imbalance and values of parameters.
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95% CI for random effects (nested)
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95% CI for random effects (crossed)
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Some generalized fiducial projects

We applied generalized fiducial inference to:
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We applied generalized fiducial inference to:

Unbalanced random effect model with amazing results

+ Linear Mixed Model
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Logistic regression (LD50) + General Linear Models.
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Some generalized fiducial projects

We applied generalized fiducial inference to:

Unbalanced random effect model with amazing results

+ Linear Mixed Model

Logistic regression (LD50) + General Linear Models.

Confidence sets for wavelet regression using fiducial

idea. This is related to model selection.
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Some generalized fiducial projects

We applied generalized fiducial inference to:

Unbalanced random effect model with amazing results

+ Linear Mixed Model

Logistic regression (LD50) + General Linear Models.

Confidence sets for wavelet regression using fiducial

idea. This is related to model selection.

Extreme value data (Generalized Pareto) & Maximum

mean (QT intervals) and model comparison.
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Some generalized fiducial projects

We applied generalized fiducial inference to:

Unbalanced random effect model with amazing results

+ Linear Mixed Model

Logistic regression (LD50) + General Linear Models.

Confidence sets for wavelet regression using fiducial

idea. This is related to model selection.

Extreme value data (Generalized Pareto) & Maximum

mean (QT intervals) and model comparison.

Ultra-highdimensional Regression Model (How to

properly introduce a penalty?)
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Concluding remarks

Generalized fiducial distributions lead often to

attractive solution with asymptotically correct

frequentist coverage.
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Concluding remarks

Generalized fiducial distributions lead often to

attractive solution with asymptotically correct

frequentist coverage.

Many simulation studies show that generalized fiducial

solutions have very good small sample properties.
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Concluding remarks

Generalized fiducial distributions lead often to

attractive solution with asymptotically correct

frequentist coverage.

Many simulation studies show that generalized fiducial

solutions have very good small sample properties.

Current popularity of generalized inference in some

applied circles suggests that if computers were

available 70 years ago, fiducial inference might not

have been rejected.
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Quotes

Zabell (1992) “Fiducial inference stands as R. A.

Fisher’s one great failure.”

Efron (1998) “Maybe Fisher’s biggest blunder will

become a big hit in the 21st century! "
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