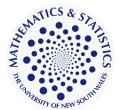
PDE with random coefficients as a problem in high-dimensional integration

Ian H Sloan

i.sloan@unsw.edu.au

University of New South Wales, Sydney, Australia King Fahd University of Petroleum and Minerals



Joint work with Frances Kuo, James Nichols (UNSW) Ivan Graham, Rob Scheichl (Bath), Christoph Schwab (ETH).

Theory

- Quasi-Monte Carlo methods

Application

- PDE with random coefficients

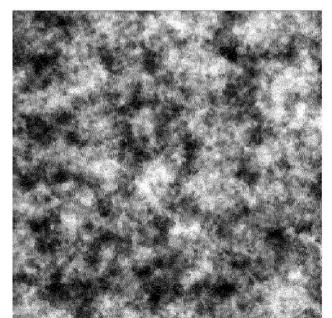
Motivating example

Uncertainty in groundwater flow

eg. risk analysis of radioactive waste disposal or CO_2 sequestration

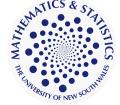
Darcy's law mass conservation law

$$egin{array}{ll} ec q &= -a\,ec
abla p \
abla
abla &= 0 \end{array} ext{ in } D \subset \mathbb{R}^d,\, d = 1,2,3 \
onumber &\longrightarrow
abla \cdot (a\,ec
abla p) = 0 \end{array}$$



together with boundary conditions

[Cliffe, et. al. (2000)]



Uncertainty in $a(x, \omega)$ leads to uncertainty in $q(x, \omega)$ and $p(x, \omega)$

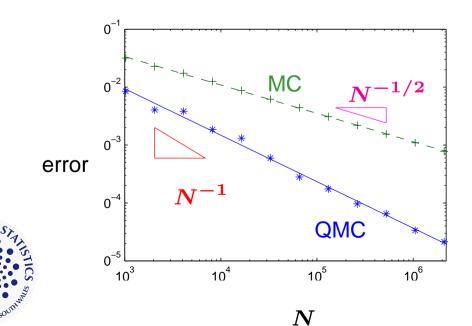
Expected values of quantities of interest

To compute the expected value of some quantity of interest:

- Generate a number of realizations of the random field (Some approximation may be required)
- 2. For each realization, solve the PDE using e.g. FEM / FVM / mFEM
- 3. Take the average of all solutions from different realizations

This describes Monte Carlo simulation.

Or, because the **expected value** is a (high dimensional) **integral**



use quasi-Monte Carlo methods

Monte Carlo (MC)

Approximate the *s*-dimensional integral

$$I_s(F):=\int\limits_{[0,1]^s}F(oldsymbol{y})doldsymbol{y}$$

$$Q_{N,s}^{ ext{MC}}(F) = rac{1}{N}\sum_{k=1}^N F(oldsymbol{t}_k),$$

with t_1, \ldots, t_N chosen randomly and independently from a uniform distribution on $[0, 1]^s$.

Error: For $F \in L^2([0,1]^s)$, $\text{error}^{\mathbf{MC}}$

where

$$\sigma^2(F) = I_s((F - I_s(F))^2) = I_s(F^2) - (I_s(F))^2.$$

Quasi-Monte Carlo (QMC)

$$Q_{N,s}(F) = rac{1}{N}\sum_{k=1}^N F(oldsymbol{t}_k) \ ,$$

with t_1, \ldots, t_N deterministic (and cleverly chosen).

What do we wish for? For F sufficiently smooth we might hope for

$$\operatorname{error}^{\mathbf{QMC}} \leq rac{C}{N}$$

with C independent of s.

In practice we can get error $QMC \leq \frac{C_{\delta}}{N^{1-\delta}}$ for arbitrary $\delta > 0$, with $C_{\delta} \to \infty$ as $\delta \to 0$, for suitably smooth F.

How to choose the QMC points?

How to choose t_1, \ldots, t_N ? There are two main methods:

Lattice rules Korobov, Hlawka, Hua & Wang (1950s), and more

recently Sloan, Kachoyan, Lyness, Woźniakowski, L'Ecuyer, Hickernell, Joe, Kuo,

Dick, Larcher, Wang, Waterhouse,

For this talk consider only "lattice rules".

Lattice rule definition

Lattice Rule (of rank 1)

$$egin{aligned} Q_{N,s}F &= rac{1}{N}\sum_{k=1}^N F\left(\left\{krac{oldsymbol{z}}{N}
ight\}
ight),\ oldsymbol{z} &\in \{1,\dots,N-1\}^s \end{aligned}$$

Shifted lattice rule

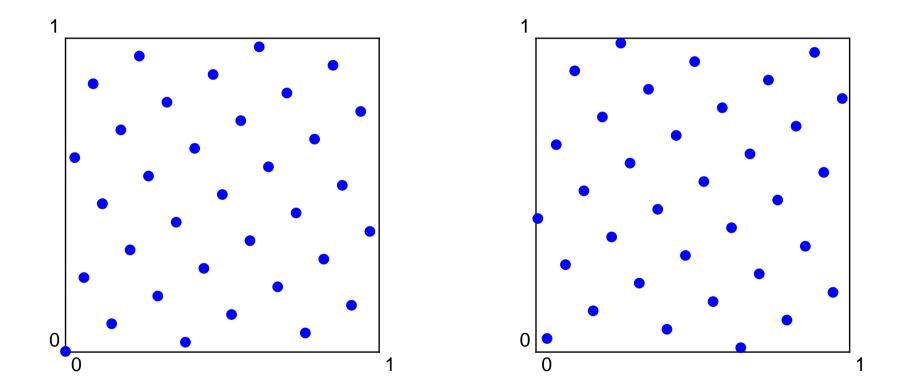
$$Q_{N,s}F = rac{1}{N}\sum_{k=1}^N F\left(\left\{krac{oldsymbol{z}}{N}+oldsymbol{\Delta}
ight\}
ight),$$

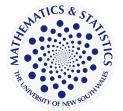
 Δ (the "shift") $\in [0,1]^s$

Ref: IHS & S. Joe, "Lattice Methods for Multiple Integration", Oxford '94.

Example of lattice & shifted lattice rules

$$m{N}=34,\,m{z}=(1,21)$$
 $m{N}=34,\,m{z}=(1,21),\,\Delta=(0.8,0.1)$





Randomly shifted lattice rules

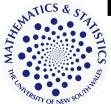
In practice we like randomly shifted lattice rules:

$$Q_{N,s}F = rac{1}{q}\sum_{i=1}^{q}\left(rac{1}{N}\sum_{k=1}^{N}F\left(\left\{krac{oldsymbol{z}}{N}+oldsymbol{\Delta}_{oldsymbol{i}}
ight\}
ight),
ight)$$

where Δ_i for i = 1, ..., q are random vectors chosen independently from a uniform distribution on $[0, 1]^s$.

As with MC, this gives an unbiased estimate of the integral, and allows a practical estimate of the error.

Now there is only one thing to choose: namely the integer vector \boldsymbol{z} .



But how to choose *z*?

IDEA: the variables are not equally important

Assume that F belongs to a *weighted* Sobolev space, with sqd. norm

"POD" weights ("product and order dependent" weights)

 $\gamma_{\mathfrak{u}} = \Gamma_{|\mathfrak{u}|} \prod_{j \in I} \gamma_{j}$ - Kuo, Schwab, Sloan (SINUM '12): *PDE with random coefficient*

Examples (for product weights)

•
$$s = 1: ||F||_{1,\gamma}^2 = |F(0)|^2 + \frac{1}{\gamma_1} \int_0^1 \left| \frac{dF}{dy} \right|^2 dy$$

• $s = 2:$
 $||F||_{2,\gamma}^2 = |F(0,0)|^2$
 $+ \frac{1}{\gamma_1} \int_0^1 \left| \frac{\partial F}{\partial y_1}(y_1,0) \right|^2 dy_1 + \frac{1}{\gamma_2} \int_0^1 \left| \frac{\partial F}{\partial y_2}(0,y_2) \right|^2 dy_2$
 $+ \frac{1}{\gamma_1\gamma_2} \int_0^1 \int_0^1 \left| \frac{\partial^2 F}{\partial y_1\partial y_2} \right|^2 dy_1 dy_2$

Note that if $F(y_1, y_2) = g(y_1)h(y_2)$ then $||F||_{2,\gamma} = ||g||_{1,\gamma} ||h||_{1,\gamma}$. This makes the product case the easiest.

Worst case error

The worst case error (wce) of a QMC rule with points t_1, \ldots, t_N is defined by:

$$e_{N,s,oldsymbol{\gamma}} := \sup_{\|oldsymbol{F}\|_{s,oldsymbol{\gamma}} \leq 1} \left| \int_{[0,1]^s} oldsymbol{F}(oldsymbol{y}) \, \mathrm{d}oldsymbol{y} - rac{1}{N} \sum_{k=1}^N oldsymbol{F}(oldsymbol{t}_k)
ight|$$

$$\implies$$
 (error for given F) $\leq e_{N,s,oldsymbol{\gamma}} imes \|F\|_{s,oldsymbol{\gamma}}$



An early existence result

THEOREM IHS & H Woźniakowski, '98 Assume product weights,

$$\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$$
. Then if (and only if) $\sum_{j=1}^{\infty} \gamma_j < \infty$ there exist points $oldsymbol{t}_1, \dots, oldsymbol{t}_N \in [0,1]^s$ such that

$$e_{N,s,oldsymbol{\gamma}} \leq rac{D_{oldsymbol{\gamma}}}{\sqrt{N}},$$

with D_{γ} independent of s.

Remarks

- 1. The bound holds e.g. for $\gamma_j = 1/j^2$. It does **not** hold for the classical weights $\gamma_j = 1$.
- 2. D_{γ} is known explicitly: for example, we can take

$$D_\gamma = \exp\left(rac{1}{4}\sum_{j=1}^\infty \gamma_j
ight).$$

3. The condition $\sum_{j=1}^{\infty} \gamma_j < \infty$ is <u>necessary</u> as well as sufficient. For every choice of points we can construct a lower bound on the worst-case error,

which grows unboundedly with s if the condition fails.

4. The convergence rate is only the Monte Carlo rate; and the proof that ∃ a good QMC rule is not constructive!

A better existence result

THEOREM Sloan and Woźniakowski ('01): If

$$\sum_{j=1}^{\infty} \gamma_j^{1/2} < \infty,$$

and if N is prime, then for each $s \exists a \text{ SHIFTED LATTICE RULE}$

 $Q_{N,s,oldsymbol{z},oldsymbol{\Delta}}^{ ext{lattice}}$ such that

$$e_{N,s,\gamma} \leq rac{C_{\gamma,\delta}}{N^{1-\delta}} \qquad orall \delta > 0.$$

Recall – a shifted lattice rule (with N prime) is a QMC rule of special form

$$Q_{N,s,oldsymbol{z},\Delta}^{ ext{lattice}}(F) = rac{1}{N}\sum_{k=1}^{N}F\left(\left\{rac{koldsymbol{z}}{N}+\Delta
ight\}
ight),$$

$$oldsymbol{z} \in \{1,2,\ldots,N-1\}^s, \, \Delta \in [0,1)^s$$

Proof is by averaging in a different way over Δ and z.

Shift-averaged wce

Now turn to construction.

It is convenient to work with the "root-mean square shift-averaged" worst case error: for a given choice of points t_1, \ldots, t_N ,

$$e_{N,s,\boldsymbol{\gamma}}^{\mathrm{rms}} = \sqrt{\int_{[0,1]^s} \dots \int_{[0,1]^s} e_{N,s,\boldsymbol{\gamma}} (\boldsymbol{\Delta}_1,\dots,\boldsymbol{\Delta}_q)^2 \mathrm{d} \boldsymbol{\Delta}_1 \dots \mathrm{d} \boldsymbol{\Delta}_q}$$

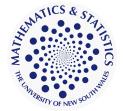
We do this because the shift-averaged wce is simpler than the wce for a shift Δ .

Shift-averaged wce - the anchored case

The shift-averaged worst-case error for the case of the anchored norm and product weights is given by

$$e_{N,s,\gamma}^{
m rms}(m{z})^2 = -\prod_{j=1}^s (1+\gamma_j/3)
onumber \ + rac{1}{N} \sum_{i=1}^N \prod_{j=1}^s \left[1+\gamma_j \left(B_2(\{iz_j/N\})+rac{1}{3}
ight)
ight]$$

where $B_2(x) = x^2 - x + \frac{1}{6}$.



Component-by-component construction

- We want a z that makes the shift-averaged worst case error as small as possible. ~ Exhaustive search is in practice impossible - too many choices! ~
- **CBC algorithm** [Korobov (1960s), Sloan, Kuo, Joe (2002);...]
 - 1. Set $z_1 = 1$.
 - 2. With z_1 fixed, choose z_2 to minimize the s = 2 worst case error.
 - 3. With z_1, z_2 fixed, choose z_3 to minimize the s = 3 worst case error.
 - 4. etc.
 - Cost for product wts. is only $\mathcal{O}(s N \log N)$ using FFTs. [Nuyens, Cools (2006)]
 - Optimal rate of convergence $\mathcal{O}(N^{-1+\delta})$ in weighted Sobolev space, with the implied constant independent of *s* under an appropriate condition on the weights. [Kuo (2003); Dick (2004)]

 \sim Averaging argument: \exists one choice as good as average! \sim



The optimal convergence property of CBC

THEOREM (for product weights) Frances Kuo, J. Complexity, (2003)

Assume product weights, $\gamma_{\mathfrak{u}} = \prod_{j \in \mathfrak{u}} \gamma_j$. Let N be prime, and let z_1, z_2, \ldots, z_s be chosen by the CBC algorithm. Assume also

$$\sum_{j=1}^{\infty} \gamma_j^{1/2} < \infty.$$

Then $\forall \delta > 0$

$$e_{oldsymbol{\gamma}}^{\mathrm{rms}}(oldsymbol{t}_1,\ldots,oldsymbol{t}_N) \ \leq \ rac{C_{oldsymbol{\gamma},\delta}}{N^{1-\delta}}.$$

Thus the optimal rate is achieved by the CBC algorithm with product weights.

Proof: Averaging argument again: ∃ one choice as good as average!

Now to applications: the present state of play

- ... in the application of QMC to PDEs with random coefficients:
- 0. Graham, Kuo, Nuyens, Scheichl, Sloan (J. Comput. Physics, 2011)
 - application of QMC to the lognormal case
 - use circulant embedding to avoid truncation of KL expansion
 - detailed numerical experiments, but no error analysis
- 1. Kuo, Schwab, Sloan (SINUM, to appear)
 - application of QMC to the uniform case
 - no numerical results, but we gave a complete error analysis
 - matches the best N term result by Cohen, De Vore, Schwab (2010)
 - for the first time we know precisely how to choose the weights
- 2. Kuo, Schwab, Sloan (submitted)
 - a multi-level version of the analysis for the uniform case
- 3. Graham, Kuo, Nichols, Scheichl, Schwab, Sloan (in progress)
 - application of QMC to the lognormal case
 - detailed numerical experiments as well as complete error analysis

A model problem – the uniform case

$$-
abla \cdot (a(oldsymbol{x},oldsymbol{y})
abla u(oldsymbol{x},oldsymbol{y})) = f(oldsymbol{x})$$
 in D ,

$$u(\boldsymbol{x}, \boldsymbol{y}) = 0$$
 on ∂D , $\boldsymbol{y} \in \boldsymbol{U} := [-\frac{1}{2}, \frac{1}{2}]^{\mathbb{N}}$,

with D a bounded Lipschitz domain in \mathbb{R}^d , and

$$a(oldsymbol{x},oldsymbol{y})\ =\ ar{a}+\sum_{j=1}^\infty oldsymbol{y_j}\psi_j(oldsymbol{x}),\qquad oldsymbol{x}\in D,\quad oldsymbol{y}\in U$$
 .

Here y_1, y_2, \ldots are independent random variables uniformly

distributed on $\left[-\frac{1}{2},\frac{1}{2}\right]$; with ψ_j such that $\sum_j \|\psi_j\|_{\infty} < \infty$,

and with \bar{a} large enough and $\sum_{j} \|\psi_{j}\|_{\infty}$ small enough to ensure

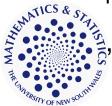
$$a_{\mathsf{max}} \geq a(oldsymbol{x},oldsymbol{y}) \geq a_{\mathsf{min}} > 0,$$

 \mathbf{M} making the PDE **strongly elliptic** for every \mathbf{y} .

Recently Cohen, De Vore and Schwab, in "Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs", Foundations of Computational Mathematics (2010), established sharp error bounds for exactly this problem. They used a stochastic Galerkin method, combined with (non-constructive) 'best N-term approximation'.

We aim to design QMC rules that achieve the same result.

This problem is one in which the dimensionality (i.e. the number of parameters y_j) is infinite.



Method: FEM plus QMC

Finite element method to solve PDE for a fixed **y**.

Quasi-Monte Carlo method to integrate over **y**.



Other approaches

Wiener, Babuska, Schwab, Tempone, Nobile, Karniadakis, Xiu, Scheichl, Ghanem, ...

There are many other approaches, including

- polynomial chaos,
- generalized polynomial chaos,
- stochastic Galerkin,
- stochastic collocation
- Monte Carlo

All methods for PDE with random coefficients face serious

challenges when the dimensionality is high.

THE WATCH & STATISTICS & STATISTICS

And when all else fails, people who need answers generally turn to Monte Carlo methods. We aim to beat Monte Carlo.

What do we want to calculate?

The problem is to compute the expected value of

$$F(oldsymbol{y}) := G(u(\cdot,oldsymbol{y}))$$

for some linear functional G of the solution u of the PDE.

The expected value is an infinite-dimensional **integral**, where the meaning is:

$$egin{aligned} I[F] &:= \int_{\left[-rac{1}{2},rac{1}{2}
ight]^{\mathbb{N}}}F(oldsymbol{y})\mathrm{d}oldsymbol{y} \ &:= \lim_{s o \infty} \int_{\left[-rac{1}{2},rac{1}{2}
ight]^s}F(y_1,\ldots,y_s,oldsymbol{0},oldsymbol{0},\ldots)\mathrm{d}y_1\ldots\mathrm{d}y_s. \end{aligned}$$

Note that replacing y_{s+1}, y_{s+2}, \dots by 0 is equivalent to replacing $a(\boldsymbol{x}, \boldsymbol{y})$ by $a_s(\boldsymbol{x}, \boldsymbol{y}) := \bar{a}(\boldsymbol{x}) + \sum_{j=1}^s y_j \psi_j(\boldsymbol{x}).$

The smoother the better

The faster the decay of $\|\psi_j\|_{\infty}$, the smoother (with respect to \boldsymbol{x}) is the random field $a(\boldsymbol{x}, \boldsymbol{y})$, and the easier it is to get fast convergence.

We suppose that there exists p satisfying 0 such that

$$\sum_{j\geq 1} \|\psi_j\|_{\infty}^p < \infty .$$
 (1)

The smaller is p the faster the convergence of $\sum_{j} y_{j} \psi_{j}(\boldsymbol{x})$, and the fewer points we should need in our QMC rule.

Example: If $\psi_j(\boldsymbol{x}) = j^{-\frac{3}{2}-\delta} \times$ uniformly bounded functions of \boldsymbol{x} , with $\delta > 0$, then $\|\psi_j\|_{\infty} \le c j^{-\frac{3}{2}-\delta}$, and we may take p = 2/3.

This is exactly the smoothness required by Cohen et al. to achieve $O(N^{-1})$ convergence, so p = 2/3 is special.

Recall: the problem is to compute the expected value (i.e. the integral) of a linear functional of u,

 $F(\boldsymbol{y}) := G(u(\cdot, \boldsymbol{y})).$

We will approximate I(F) by $Q_{N,s}(F_h)$, where $F_h = G(u_h(\cdot, \boldsymbol{y}))$ is the functional *G* applied to the finite element solution u_h .

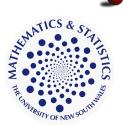
What is the error?

 $I(G(u)) - Q_{N,s}(G(u_h))$

 $= (I - I_s)(G(u)) + (I_s(G(u)) - Q_{N,s}(G(u))) + Q_{N,s}(G(u - u_h)) .$

The overall error is a sum of

- a dimension truncation error (which is inevitable when a finite-dimensional QMC method is used for an infinite dimensional integral),
 - a *quadrature error*, and



a FE discretization error

The quadrature error

Here we use a QMC intergation rule, and focus on the quadrature

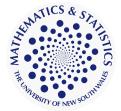
error,

$$|I_s(F)-Q_{N,s}(F)|,$$

with $F(\boldsymbol{y}) = G(u(\cdot, \boldsymbol{y})).$

First, look at the error $|I_s(F) - Q_{N,s,\Delta}(F)|$ where $Q_{N,s,\Delta}$ is the shifted lattice rule with shift Δ ,

$$Q_{N,s, \Delta}(F) = rac{1}{N} \sum_{k=1}^{N} F\left(\left\{rac{koldsymbol{z}}{N} + \Delta
ight\} - \left(rac{1}{2}, \dots, rac{1}{2}
ight)
ight)$$



From worst case error to error bound

Recall: the worst case error for the rule $Q_{N,s,\Delta}$ in the space $H_{s,\gamma}$ is:

$$e_{N,s,oldsymbol{\gamma},oldsymbol{\Delta}} := \sup_{\|F\|_{s,oldsymbol{\gamma}} \leq 1} \left| I_s(F) - Q_{N,s,oldsymbol{\Delta}}(F)
ight| \, .$$

$$\implies |I_s(F) - Q_{N,s, \mathbf{\Delta}}(F)| \leq e_{N,s, \mathbf{\gamma}, \mathbf{\Delta}} \ imes \ \|F\|_{s, \mathbf{\gamma}}$$

And if we now take the root mean square average over shifts,

$$\left| \sqrt{\mathbb{E}[\left(I_s(F) - Q_{N,s,\cdot}(F)
ight)^2]} \le e_{N,s,\gamma}^{\mathbf{rms}} imes \ \|F\|_{s,oldsymbol{\gamma}},$$

where $e_{N,s,\gamma}^{\rm rms}$ is the shift-averaged worst-case error,

$$e_{N,s,\boldsymbol{\gamma}}^{\mathbf{rms}}:=\sqrt{\mathbb{E}[e(Q_{N,s,\cdot};H_{s,\boldsymbol{\gamma}})]^2}.$$

(Here the expectation \mathbb{E} is just the **integral** over all shifts Δ .)

Error bound

$$\sqrt{\mathbb{E}[(I(F)-Q_{N,s,\cdot}(F))^2]} \leq e_{N,s,oldsymbol{\gamma}}^{\mathrm{rms}} imes \ \|F\|_{s,oldsymbol{\gamma}}.$$

From before, with small modification to the norm,

$$\|F\|_{s,\gamma} := \left(\sum_{\mathfrak{u} \subseteq \{1,\dots,s\}} \frac{1}{\gamma_{\mathfrak{u}}} \int_{[-\frac{1}{2},\frac{1}{2}]^{|\mathfrak{u}|}} \left| \int_{[-\frac{1}{2},\frac{1}{2}]^{s-|\mathfrak{u}|}} \frac{\partial^{|\mathfrak{u}|}F}{\partial \boldsymbol{y}_{\mathfrak{u}}} (\boldsymbol{y}_{\mathfrak{u}},\boldsymbol{y}_{-\mathfrak{u}}) \mathrm{d}\boldsymbol{y}_{-\mathfrak{u}} \right|^{2} \mathrm{d}\boldsymbol{y}_{\mathfrak{u}} \right)^{\frac{1}{2}}$$

And for general weights $\gamma_{\mathfrak{u}},$ and \boldsymbol{z} from CBC it can be shown that

$$e_{N,s,\gamma}^{\mathrm{rms}} \leq \frac{1}{N^{1/2\lambda}} \left(\sum_{\emptyset \neq \mathfrak{u} \subseteq \{1,...,s\}} \gamma_{\mathfrak{u}}{}^{\lambda} \left(\frac{2\zeta(2\lambda)}{(2\pi^2)^{\lambda}} \right)^{|\mathfrak{u}|} \right)^{1/2\lambda}$$

for all $\lambda \in (\frac{1}{2}, 1]$. (We would like $\lambda = 1/2$, but $\zeta(x) \to \infty$ as $x \to 1$.) Choosing weights $\gamma_{\mathfrak{u}}$ is delicate: smaller weights reduces e^{rms} but increases $||F||_{s,\gamma}$.

We need to bound the norm

$$\|F\|_{s,\gamma} := \left(\sum_{\mathfrak{u} \subseteq \{1,\ldots,s\}} \frac{1}{\gamma_{\mathfrak{u}}} \int_{[-\frac{1}{2},\frac{1}{2}]^{|\mathfrak{u}|}} \left| \int_{[-\frac{1}{2},\frac{1}{2}]^{s-|\mathfrak{u}|}} \frac{\partial^{|\mathfrak{u}|}F}{\partial y_{\mathfrak{u}}} (y_{\mathfrak{u}},y_{-\mathfrak{u}}) \mathrm{d}y_{-\mathfrak{u}} \right|^2 \mathrm{d}y_{\mathfrak{u}} \right)^{1/2},$$

We need to find a bound on the norm $\|F\|_{s,\gamma}$.

This involves finding mixed first partial derivatives with respect to \boldsymbol{y} .

How? By differentiating the PDE.

The PDE in weak form

Let $V := H_0^1(D)$.

Then the weak (parametric) form of the PDE is: for $oldsymbol{y} \in U$

$$\int_D a({m x},{m y})\,
abla u({m x},{m y})
abla v({m x}) \mathrm{d}{m x} \ = \ \int_D f({m x}) v({m x}) \mathrm{d}{m x} \quad orall v \in V \ ,$$

[Stochastic Galerkin: Integrate also with respect to \boldsymbol{y} . Choose $u(\boldsymbol{x}, \boldsymbol{y}), v(\boldsymbol{x}, \boldsymbol{y})$ from a tensor product of finite dimensional spaces. Stochastic collocation: Collocate the above equation at

 $oldsymbol{y}_1,oldsymbol{y}_2,\ldots,oldsymbol{y}_M]$

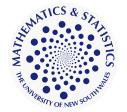
Differentiating with respect to y_j , we get (with $\partial_y := \frac{\partial}{\partial y}$)

$$\int_{D} a(\boldsymbol{x},\boldsymbol{y}) \nabla \partial_{\boldsymbol{y}_{j}} u(\boldsymbol{x},\boldsymbol{y}) \nabla v(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} + \int_{D} \psi_{j}(\boldsymbol{x}) \nabla u(\boldsymbol{x},\boldsymbol{y}) \nabla v(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} = 0,$$

$$\int_D a(\boldsymbol{x},\boldsymbol{y}) \, |\nabla \partial_{\boldsymbol{y}_j} u(\boldsymbol{x},\boldsymbol{y})|^2 \mathrm{d}\boldsymbol{x} \, = - \int_D \psi_j(\boldsymbol{x}) \, \nabla u(\boldsymbol{x},\boldsymbol{y}) \nabla \partial_{\boldsymbol{y}_j} u(\boldsymbol{x},\boldsymbol{y}) \mathrm{d}\boldsymbol{x} \; ,$$

 $\|a_{\min}\|\partial_{y_j}u(\pmb{x},\pmb{y})\|_V^2 \leq \|\psi_j\|_\infty \|u(\pmb{x},\pmb{y})\|_V \|\partial_{y_j}u(\pmb{x},\pmb{y})\|_V$

$$egin{aligned} \|oldsymbol{\partial}_{oldsymbol{y}_{oldsymbol{j}}} u(oldsymbol{x},oldsymbol{y})\|_{V} &\leq rac{\|oldsymbol{\psi}_{oldsymbol{j}}\|_{\infty}}{a_{\min}} \|u(oldsymbol{x},oldsymbol{y})\|_{V} &\ &\leq rac{\|oldsymbol{\psi}_{oldsymbol{j}}\|_{\infty}}{a_{\min}} rac{\|oldsymbol{\psi}_{oldsymbol{j}}\|_{\infty}}{a_{\min}} rac{\|oldsymbol{\psi}_{oldsymbol{j}}\|_{\infty}}{a_{\min}}\,. \end{aligned}$$



Differentiating with respect to other y_k

Keep differentiating, and getting similar estmates. Eventually,

$$\begin{split} \|u\|_{H_{s,\gamma}([-\frac{1}{2},\frac{1}{2}]^{s},V)} &:= \left(\sum_{\mathfrak{u}\in\{1:s\}} \frac{1}{\gamma_{\mathfrak{u}}} \int_{[-\frac{1}{2},\frac{1}{2}]^{|\mathfrak{u}|}} \left\|\int_{[-\frac{1}{2},\frac{1}{2}]^{s-|\mathfrak{u}|}} \partial_{\boldsymbol{y}_{\mathfrak{u}}} u(\cdot;\boldsymbol{y}_{\mathfrak{u}},\boldsymbol{y}_{-\mathfrak{u}}) \mathrm{d}\boldsymbol{y}_{-\mathfrak{u}} \right\|_{V}^{2} \mathrm{d}\boldsymbol{y}_{\mathfrak{u}} \right)^{\frac{1}{2}} \\ &\leq \left(\sum_{|\mathfrak{u}|<\infty} \frac{(|\mathfrak{u}|!)^{2}}{\gamma_{\mathfrak{u}}} \prod_{j\in\mathfrak{u}} \left(\frac{\|\psi_{j}\|_{\infty}}{a_{\min}}\right)^{2}\right)^{\frac{1}{2}} \frac{\|f\|_{H^{-1}(D)}}{a_{\min}} \,. \end{split}$$

But is this sum bounded as $s \to \infty$? It is if we choose the weights $\gamma_{\mathfrak{u}}$ large enough!

THE ANALICS & SARA

Now choose the weights

Now choose the weights to minmise the upper bound on

worst-case error \times norm, i.e. choose weights to minimise

$$\left(\sum_{\emptyset \neq \mathfrak{u} \subseteq \{1,...,s\}} \gamma_{\mathfrak{u}}{}^{\lambda} \left(\frac{2\zeta(2\lambda)}{(2\pi^2)^{\lambda}}\right)^{|\mathfrak{u}|}\right)^{1/2\lambda} \times \left(\sum_{|\mathfrak{u}| < \infty} \frac{(|\mathfrak{u}|!)^2}{\gamma_{\mathfrak{u}}} \prod_{j \in \mathfrak{u}} \left(\frac{\|\psi_j\|_{\infty}}{a_{\min}}\right)^2\right)^{\frac{1}{2}}$$

1

The (elementary!) answer is:

$$\gamma_{\mathfrak{u}} = (|\mathfrak{u}|!)^{rac{2}{1+\lambda}} \prod_{j\in\mathfrak{u}} lpha_j,$$

where
$$lpha_j = rac{\|\psi\|_\infty}{a_{\min}\sqrt{2\zeta(2\lambda)/(2\pi^2)^\lambda}}$$

Main results for quad. error

Theorem Kuo, Schwab, S. SIAM J Nmer Anal, to appear

Assume that for some $p \leq 1$ we have $\sum_{j=1}^{\infty} \|\psi_j\|_{\infty}^p < \infty$, eg $\|\psi_j\|_{\infty} = j^{-\frac{1}{p}-\epsilon}$, and f that the weights are as above.

(a) Then $\|u\|_{H_{\gamma}(U,V)} < \infty.$

(b) And if we now assume $p \leq 2/3$ then for arbitrary $\epsilon > 0$ we have

 $\operatorname{error}^{\operatorname{QMC}} \leq C N^{-1+\epsilon}.$

Thus we get the optimal $O(N^{-1+\epsilon})$ result for p=2/3, which is exactly as in the best *N*-term results of Cohen, De Vore and Schwab.

All our convergence results up to $O(N^{-1+\delta})$ match the best N-term fresults, under exactly the same conditions.

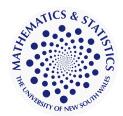
CBC for POD weights?

The weights in the Theorem are POD weights, i.e., weights of the "product and order-dependent" form

 $\gamma_{\mathfrak{u}}=\Gamma_{|\mathfrak{u}|}\prod_{j\in\mathfrak{u}}lpha_{j}.$

It turns out (Kuo, Scwhab, S, ANZIAM J, to appear) that fast CBC is possible for POD weights: only a small modification needed from the already existing CBC algorithm for 'order-dependent' weights $\gamma_{\mathfrak{u}} = \Gamma_{|\mathfrak{u}|}$ IHS, Wang and Woźniakowski 2004.

Thus we can construct cheaply a (randomly shifted) lattice rule that achieves the optimal result, for linear functionals of the solution to the model PDE – a simple PDE but one with an infinite number of terms to describe the random coefficient.



The lognormal permeability field

Write permeability as $a({m x},\omega)$

 $\omega\in\Omega,$ a probability space.

A common model is the lognormal field:

 $a(\pmb{x},\omega) = \exp(Z(\pmb{x},\omega))$

where $Z(\boldsymbol{x}, \cdot)$ is a Gaussian random field with mean zero and covariance function $R(\boldsymbol{x}, \boldsymbol{z})$.

That is,

$$R(\boldsymbol{x}, \boldsymbol{z}) := \mathbb{E}[Z(\boldsymbol{x}, \cdot)Z(\boldsymbol{z}, \cdot)].$$

Examples of 2d covariance functions

$$R(\pmb{x}, \pmb{y}) = \sigma^2 \exp\left(-rac{|x_1 - y_1|^2 + |x_2 - y_2|^2}{\lambda^2}
ight),$$

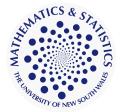
- very smooth

$$R(oldsymbol{x},oldsymbol{y}) \ = \ \sigma^2 \exp\left(-rac{\sqrt{|x_1-y_1|^2+|x_2-y_2|^2}}{\lambda}
ight),$$

– not smooth at $\boldsymbol{x} = \boldsymbol{y}$.

where σ^2 is the variance, and λ is the correlation length.

How to compute realisations of the input field? One way is:



Karhunen-Loève expansion

$$Z(\boldsymbol{x},\omega) = \sum_{j=1}^{\infty} \sqrt{\mu_j} \, \boldsymbol{y_j} \phi_j(\boldsymbol{x}),$$

where (μ_j,ϕ_j) satisfy

$$\int_D R(oldsymbol{x},oldsymbol{y}) \phi_j(oldsymbol{y}) \, \mathrm{d}oldsymbol{y} = \mu_j \phi_j(oldsymbol{x}),$$

$$\int_D \phi_i(\boldsymbol{y}) \phi_j(\boldsymbol{y}) \, \mathrm{d}\boldsymbol{y} = \delta_{ij},$$

and the y_j are independent standard normal random numbers.

The sequence (y_1, y_2, \cdots) corresponds to the point ω in the probability space.

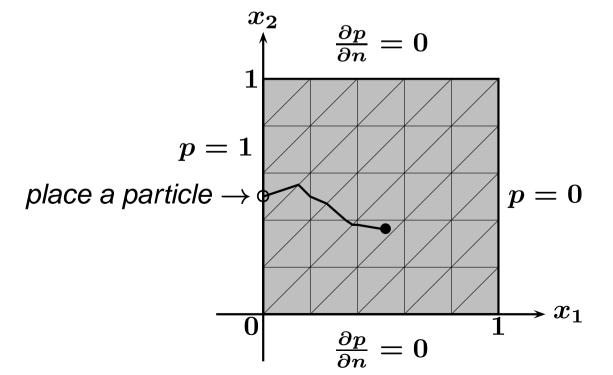
In practice the sum is truncated after say s terms. Then the expected value is an s-dimensional integral.

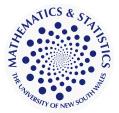
Particle paths

For a particular realisation of the permeability field, after we have found the pressure field p, to find the position \boldsymbol{x} of a particle of the fluid solve

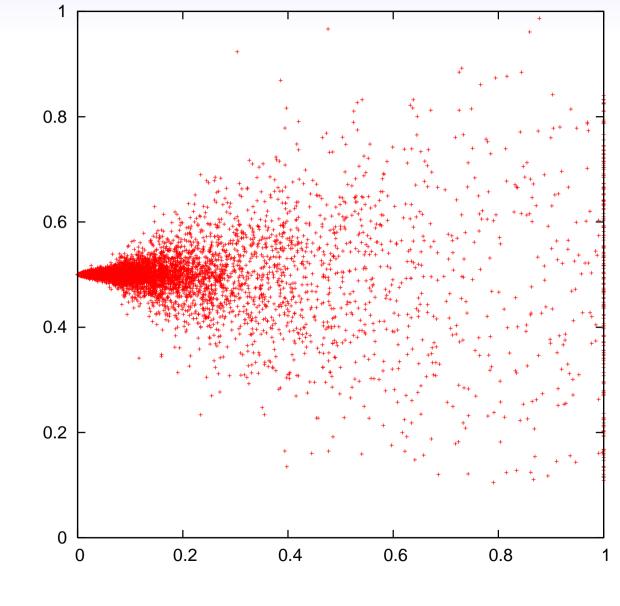
$$rac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \vec{q}(\boldsymbol{x}) = -a(\boldsymbol{x}) \nabla p(\boldsymbol{x}),$$

subject to $\boldsymbol{x} = (0, 0.5)$ at t = 0.





Particle displacement after time t = 0.1



Note: Each time the permeability field is different!