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Background

• Wireless communication systems are having increasingly significant
ecological impact.

• Future systems need to support the growing data traffics with high
spectral efficiency and energy efficiency.

• Various transmission strategies are being implemented, including
cooperative relay, femtocell system, and cognitive radio.
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Conventional cellular network

• Centralized
architecture.

• Large coverage
area.

• Sparse and regular
frequency reuse.
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Emerging cellular networks

• Hybrid network
architecture.

• Smaller coverage
area.

• Dense and irregular
frequency reuse.
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Motivation

How to effectively quantify the spatial spectrum utilization efficiency?

• Most conventional performance metrics focus on point-to-point link,
e.g.

• Ergodic capacity quantifies bandwidth utilization efficiency.
• Average error rate evaluates transmission reliability.

• The spatial ‘footprint’ of radio transmission was seldom taken into
consideration.

• Pollute a certain area over its operating spectrum.
• Simultaneous transmission over this spectrum not possible due to heavy

mutual interference.
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Area Spectral Efficiency for Cellular Networks

• First introduced by [Alouini/Goldsmith’TVT99] for cellular network.
• Ratio of maximum data rate per unit bandwidth of arbitrary user in

BS’s coverage area over the size of reuse partition, i.e.

ASE =
C

πD2/4
,

where D is the reuse distance.
• Recently applied to performance characterization of two-tier cellular

network in [Kim et. al.’TVT10].
• Typical hexagon cell structure greatly facilitates ASE analysis.

We generalize the ASE concept to analyze arbitrary wireless systems!
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Generalized Area Spectral Efficiency

Ratio of ergodic capacity of the link over the size of the affected area of the
radio transmission, i.e. η = C/Aaff.

• Affected area Aaff: area where significant amount of transmission
power is observed.

• Given a predetermined minimum received signal power Pmin, the
affected area can be estimated as

Aaff =
∫ ∞

0
Pr[Prec ≥ Pmin]r dr.

• Ergodic capacity C: averaging the instantaneous link capacity over the
distribution of received SNR/SINR Γ

C =
∫ ∞

0
log2

(
1 + Γ

)
dFΓ(γ).
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GASE for Point-to-Point Transmission

• Assume log-distance path loss plus Rayleigh fading environment.
• Incremental area of distance d from the transmitter is affected if and

only if
Pt · Z/da ≥ Pmin,

where Pt is transmission power, a is path loss exponent, and Z is
Exponentially distributed random fading power gain.

• The affected area can be determined as

Aaff =
1
a

Γ
(

2
a

)(
Pt

Pmin

)2/a

.

• The ergodic capacity of the point-to-point link is

C =
1

ln 2
E1

(
daN
Pt

)
exp

(
daN
Pt

)
.

where N is the noise power.
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Numerical Example
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Figure: The effect of transmission
power Pt on η.

• Non-monotonic function of Pt.
• Limiting behavior of η.

lim
Pt→0+

η =


∞, a < 2;
2 log2 e · Pmin

Nd2 , a = 2;
0, a > 2,

and
lim

Pt→∞
η = 0.

• Optimal Pt value exists by solving(
daN
P∗t

+
2
a

)
E1

(
daN
P∗t

)
exp

(
daN
P∗t

)
= 1.
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ASE of Cooperative Relay Network

• Half-duplex decode-and-forward (DF) &
amplify-and-forward (AF) relaying.

• Instantaneous channel capacity based
transmission mode selection.

• Different affected areas for source and relay
transmission steps in general

AS
aff =

1
a

Γ
(

2
a

)(
PS

Pmin

)2/a

, AR
aff =

1
a

Γ
(

2
a

)(
PR

Pmin

)2/a

where PS and PR are the transmission power of source and relay nodes.
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Transmission Mode Selection

• Instantaneous capacity of direct transmission

Cd = log2(1 + ΓSD).

• Instantaneous capacity of relay transmission

Cr =
1
2

log2(1 + Γr).

• Probability that system performs direct transmission

Pdirect = Pr
{

Cd > Cr

}
= Pr

{
Γ2

SD + 2ΓSD > Γr

}
• Probability that system performs relay transmission

Prelay = 1− Pdirect.

Hong-Chuan Yang University of Victoria



Ergodic Capacity Analysis

• Instantaneous capacity of cooperative relay system

Cinst = max
{

Cd,Cr

}
=

1
2

log2

{
1 + max

{
Γ2

SD + 2ΓSD,Γr

}}
,

Γ , max
{

Γ2
SD + 2ΓSD,Γr

}
is the equivalent received SNR.

• Ergodic capacity under direct transmission mode

Cd =
∫ ∞

0

1
2

log2

(
1 + γ

)
dFΓ(γ | Γ2

SD + 2ΓSD > Γr).

Need the distribution of Γ conditioning on Γ2
SD + 2ΓSD > Γr.

• Ergodic capacity under relay transmission mode, Cr, can be similarly
obtained.
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Conditional pdf of Γ under direct transmission mode

• Conditional pdf of Γ with DF relay protocol

fΓDF(γ | Γ2
SD + 2ΓSD > ΓDF

r ) =
γSD · fΓSD(ξ) · FΓDF

r
(γ)

2(ξ + 1) · (γSD −D(∞;α1, α2))
,

where ΓDF
r = min{ΓSR,ΓRD}, ξ =

√
γ + 1− 1,

α1 = 1
γSR

+ 1
γRD

, α2 = 2
γSR

+ 2
γRD

+ 1
γSD

,

D(x;α1, α2) = 1
2

√
π
α1

e
α2

2
4α1

[
erf(
√
α1 · x + α2

2
√
α1

)− erf( α2
2
√
α1

)
]
.

• Conditional pdf of Γ with AF relay protocol

fΓAF
r

(γ) = 2β1γe−β2γ

{
β2 K1(2β1γ) + 2β1 K0(2β1γ)

}
,

where ΓAF
r = ΓSR·ΓRD

ΓSR+ΓRD
, β1 = 1√

γSR·γRD
, β2 = 1

γSR
+ 1

γRD
,

β3 = 1
γSD

+ 1
γSR

+ 1
γRD

,

A(x;β1, β3) =
∫ x

0 2β1(t2 + 2t)e−β3(t2+2t) K1(2β1(t2 + 2t)) dt.
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Overall ASE

ASE = Pdirect ·
Cd

AS
aff

+ Prelay ·
1
2

(
Cr

AS
aff

+
Cr

AR
aff

)
,

• Cd, Cr: ergodic capacity under direct/relay transmission mode.
• Pdirect, Prelay: probability of direct/relay transmission.
• AS

aff: affected area of source-destination transmission.
• AR

aff: affected area of relay-destination transmission.

Hong-Chuan Yang University of Victoria



Optimal Relay Locations
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Figure: The effect of the distance between
source and relay node rSR on ASE and spectral
efficiency with DF relay protocol for different
angle θ.

• Optimal relay location is the
midpoint between source and
destination when θ = 0.

• When θ is small, ASE varies
dramatically as the position of relay
changes.

• When θ is large, the distance rSR has
little effect on ASE.

• Similar observation can be observed
for AF-based relay networks.
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Effect of Source Transmission Power
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Figure: The effect of the source node transmission
power Ps on ASE with DF and AF relay protocol.

• Cooperative relaying achieves
better ASE than conventional
network.

• Opportunistic transmission
mode selection.

• Smaller affected area.

• Optimal transmit power Ps to
maximize ASE exists.

• Increasing the transmission
power can lead to a higher
spectral efficiency but NOT
necessarily increase ASE.
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GASE for Underlay Cognitive Radio Transmission

Figure: System model of underlay cognitive radio transmission.

Secondary transmitter SS opportunistically transmits to secondary receiver
DS using the same frequency bandwidth of primary transmission SP-DP as
long as the interference constraint on DP is satisfied.
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Parallel Transmission Scenario

• Parallel secondary transmission occurs if the experienced interference
power at DP is less than the threshold Ith, i.e. P2 · Z/da

SP < Ith, where P2
is the transmission power of SS.

• Affected area with parallel secondary transmission

Apt
CR =

∫
Ω

P
{

Pr(rp) + Pr(rs) ≥ Pmin

}
dΩ,

where rp and rs are the distances of the incremental area to the primary
transmitter and secondary transmitter, respectively.

• Ergodic capacity

CCR =
∫ ∞

0
log2(1 + γ) · dFΓp(γ)︸ ︷︷ ︸

Cp
CR

+
∫ ∞

0
log2(1 + γ) · dFΓs(γ)︸ ︷︷ ︸

Cs
CR

,

• C
p
CR, C

s
CR: ergodic capacity of primary and secondary transmission.

• Γp, Γs: received SINR at DP and DS.
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Overall GASE

• GASE when parallel transmission occurs

ηpt
CR =

C
p
CR + C

s
CR

Apt
CR

.

• When P2 · Z/da
SP ≥ Ith, the transmission scenario reduces to

point-to-point primary transmission only case, with GASE given by

ηst
CR =

1
ln 2 E1

(
daN
P1

)
exp

(
daN
P1

)
1
a Γ
( 2

a

) ( P1
Pmin

)2/a ,

where P1 is the primary source transmission power.
• Overall GASE of underlay cognitive transmission

ηCR = P · ηpt
CR + (1− P) · ηst

CR,

where P = P {P2 · Z/da
SP < Ith}.
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Numerical Examples
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Figure: The effect of the max tolerable interference power Ith on GASE.

GASE of underlay cognitive radio transmission include those of the
point-to-point transmission and X channel transmission as special case.
• When Ith → 0, converge to the point-to-point transmission case.
• When Ith →∞, converge to the X channel case.
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Numerical Examples
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Figure: Spectral Efficiency
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Figure: GASE

• When interfering transmitter is close to target receiver
underlay cognitive transmission deteriorates both GASE and spectral
efficiency.

• When interfering transmitter is far from target receiver
• Different behavior in terms of spectral efficiency and GASE.
• Both asymptotically approach to point-to-point link.
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Conclusion

• Quantify spatial spectrum utilization efficiency of wireless systems.
• Characterize the spatial footprint of wireless transmission with affected

area.
• Develop new performance metric for arbitrary wireless transmission.
• Capture the negative effect of radio power emission.
• On-going effort: GASE analysis for ad hoc wireless networks.
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