

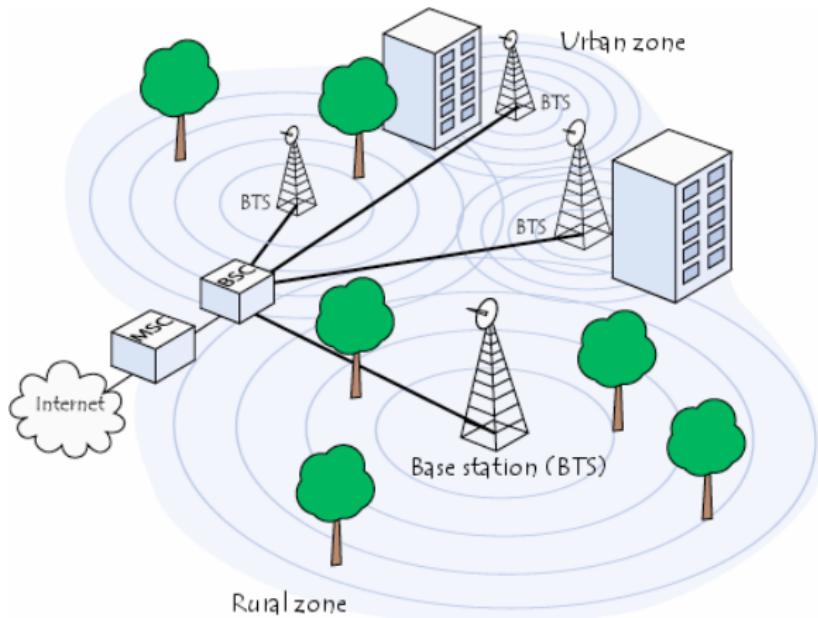
Generalized Area Spectral Efficiency: An Effective Performance Metric for Green Wireless Communications

Hong-Chuan Yang

Department of Electrical and Computer Engineering
University of Victoria
Email: *hy@uvic.ca*

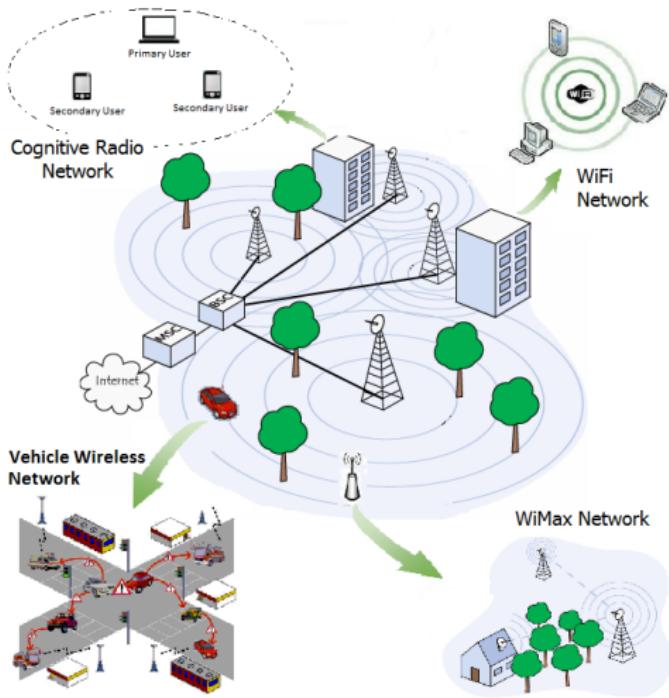
December 8, 2012

Acknowledgements: NSERC Discovery Grant
Mr. Lei Zhang, and Dr. Mazen Hasna


Outline

- ① Background and motivation
- ② ASE of Cellular Network
- ③ Generalized Area Spectral Efficiency
- ④ GASE of Cooperative Relay Network
- ⑤ GASE for Underlay Cognitive Radio Transmission
- ⑥ Conclusion

Background


- Wireless communication systems are having increasingly significant ecological impact.
- Future systems need to support the growing data traffics with high spectral efficiency and energy efficiency.
- Various transmission strategies are being implemented, including cooperative relay, femtocell system, and cognitive radio.

Conventional cellular network

- Centralized architecture.
- Large coverage area.
- Sparse and regular frequency reuse.

Emerging cellular networks

- Hybrid network architecture.
- Smaller coverage area.
- Dense and irregular frequency reuse.

How to effectively quantify the *spatial* spectrum utilization efficiency?

- Most conventional performance metrics focus on point-to-point link, e.g.
 - Ergodic capacity quantifies bandwidth utilization efficiency.
 - Average error rate evaluates transmission reliability.
- The spatial ‘footprint’ of radio transmission was seldom taken into consideration.
 - Pollute a certain area over its operating spectrum.
 - Simultaneous transmission over this spectrum not possible due to heavy mutual interference.

Area Spectral Efficiency for Cellular Networks

- First introduced by [Alouini/Goldsmith 'Tvt99] for cellular network.
- Ratio of maximum data rate per unit bandwidth of arbitrary user in BS's coverage area over the size of reuse partition, i.e.

$$ASE = \frac{\bar{C}}{\pi D^2/4},$$

where D is the reuse distance.

- Recently applied to performance characterization of two-tier cellular network in [Kim et. al.'Tvt10].
- Typical hexagon cell structure greatly facilitates ASE analysis.

We generalize the ASE concept to analyze arbitrary wireless systems!

Generalized Area Spectral Efficiency

*Ratio of ergodic capacity of the link over the size of the **affected area** of the radio transmission, i.e. $\eta = \bar{C}/A_{\text{aff}}$.*

- Affected area A_{aff} : area where significant amount of transmission power is observed.
- Given a predetermined minimum received signal power \mathcal{P}_{\min} , the affected area can be estimated as

$$A_{\text{aff}} = \int_0^{\infty} \Pr[\mathcal{P}_{\text{rec}} \geq \mathcal{P}_{\min}] r \, dr.$$

- Ergodic capacity \bar{C} : averaging the instantaneous link capacity over the distribution of received SNR/SINR Γ

$$\bar{C} = \int_0^{\infty} \log_2 (1 + \Gamma) \, dF_{\Gamma}(\gamma).$$

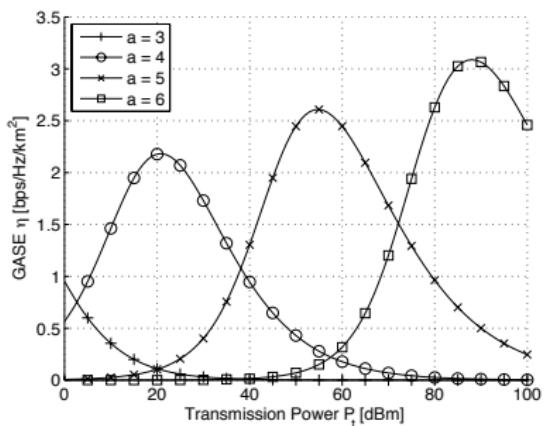
- Assume log-distance path loss plus Rayleigh fading environment.
- Incremental area of distance d from the transmitter is affected if and only if

$$P_t \cdot Z/d^a \geq P_{\min},$$

where P_t is transmission power, a is path loss exponent, and Z is Exponentially distributed random fading power gain.

- The affected area can be determined as

$$A_{\text{aff}} = \frac{1}{a} \Gamma \left(\frac{2}{a} \right) \left(\frac{P_t}{P_{\min}} \right)^{2/a}.$$


- The ergodic capacity of the point-to-point link is

$$\bar{C} = \frac{1}{\ln 2} E_1 \left(\frac{d^a N}{P_t} \right) \exp \left(\frac{d^a N}{P_t} \right).$$

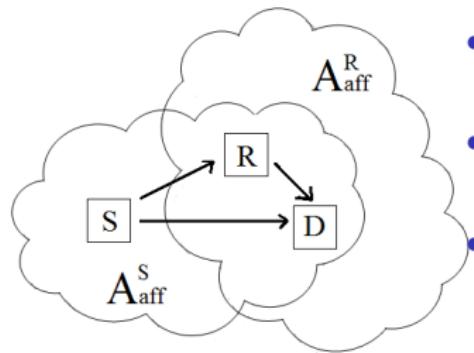
where N is the noise power.

Numerical Example

- Non-monotonic function of P_t .
- Limiting behavior of η .

Figure: The effect of transmission power P_t on η .

$$\lim_{P_t \rightarrow 0^+} \eta = \begin{cases} \infty, & a < 2; \\ 2 \log_2 e \cdot \frac{P_{\min}}{Nd^2}, & a = 2; \\ 0, & a > 2, \end{cases}$$


and

$$\lim_{P_t \rightarrow \infty} \eta = 0.$$

- Optimal P_t value exists by solving

$$\left(\frac{d^a N}{P_t^*} + \frac{2}{a} \right) E_1 \left(\frac{d^a N}{P_t^*} \right) \exp \left(\frac{d^a N}{P_t^*} \right) = 1.$$

ASE of Cooperative Relay Network

- Half-duplex decode-and-forward (DF) & amplify-and-forward (AF) relaying.
- Instantaneous channel capacity based transmission mode selection.
- Different affected areas for source and relay transmission steps in general

$$\mathbf{A}_{\text{aff}}^S = \frac{1}{a} \Gamma \left(\frac{2}{a} \right) \left(\frac{P_S}{P_{\min}} \right)^{2/a}, \quad \mathbf{A}_{\text{aff}}^R = \frac{1}{a} \Gamma \left(\frac{2}{a} \right) \left(\frac{P_R}{P_{\min}} \right)^{2/a}$$

where P_S and P_R are the transmission power of source and relay nodes.

Transmission Mode Selection

- Instantaneous capacity of direct transmission

$$C_d = \log_2(1 + \Gamma_{SD}).$$

- Instantaneous capacity of relay transmission

$$C_r = \frac{1}{2} \log_2(1 + \Gamma_r).$$

- Probability that system performs direct transmission

$$\mathbf{P}_{\text{direct}} = \Pr \left\{ C_d > C_r \right\} = \Pr \left\{ \Gamma_{SD}^2 + 2\Gamma_{SD} > \Gamma_r \right\}$$

- Probability that system performs relay transmission

$$\mathbf{P}_{\text{relay}} = 1 - \mathbf{P}_{\text{direct}}.$$

Ergodic Capacity Analysis

- Instantaneous capacity of cooperative relay system

$$\begin{aligned} \mathbf{C}_{\text{inst}} &= \max \left\{ C_d, C_r \right\} \\ &= \frac{1}{2} \log_2 \left\{ 1 + \max \left\{ \Gamma_{\text{SD}}^2 + 2\Gamma_{\text{SD}}, \Gamma_r \right\} \right\}, \end{aligned}$$

$\Gamma \triangleq \max \left\{ \Gamma_{\text{SD}}^2 + 2\Gamma_{\text{SD}}, \Gamma_r \right\}$ is the equivalent received SNR.

- Ergodic capacity under direct transmission mode

$$\bar{\mathbf{C}}_d = \int_0^{\infty} \frac{1}{2} \log_2 (1 + \gamma) dF_{\Gamma}(\gamma \mid \Gamma_{\text{SD}}^2 + 2\Gamma_{\text{SD}} > \Gamma_r).$$

Need the distribution of Γ conditioning on $\Gamma_{\text{SD}}^2 + 2\Gamma_{\text{SD}} > \Gamma_r$.

- Ergodic capacity under relay transmission mode, $\bar{\mathbf{C}}_r$, can be similarly obtained.

Conditional pdf of Γ under direct transmission mode

- Conditional pdf of Γ with DF relay protocol

$$f_{\Gamma_{\text{DF}}}(\gamma \mid \Gamma_{\text{SD}}^2 + 2\Gamma_{\text{SD}} > \Gamma_{\text{r}}^{\text{DF}}) = \frac{\bar{\gamma}_{\text{SD}} \cdot f_{\Gamma_{\text{SD}}}(\xi) \cdot F_{\Gamma_{\text{r}}^{\text{DF}}}(\gamma)}{2(\xi + 1) \cdot (\bar{\gamma}_{\text{SD}} - \mathfrak{D}(\infty; \alpha_1, \alpha_2))},$$

where $\Gamma_{\text{r}}^{\text{DF}} = \min\{\Gamma_{\text{SR}}, \Gamma_{\text{RD}}\}$, $\xi = \sqrt{\gamma + 1} - 1$,

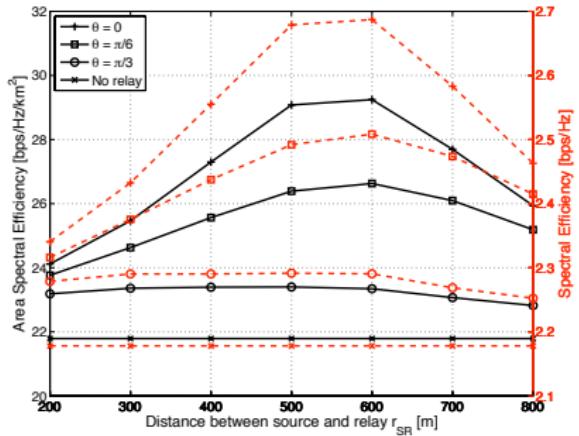
$$\alpha_1 = \frac{1}{\bar{\gamma}_{\text{SR}}} + \frac{1}{\bar{\gamma}_{\text{RD}}}, \quad \alpha_2 = \frac{2}{\bar{\gamma}_{\text{SR}}} + \frac{2}{\bar{\gamma}_{\text{RD}}} + \frac{1}{\bar{\gamma}_{\text{SD}}},$$

$$\mathfrak{D}(x; \alpha_1, \alpha_2) = \frac{1}{2} \sqrt{\frac{\pi}{\alpha_1}} e^{\frac{\alpha_2^2}{4\alpha_1}} \left[\text{erf}(\sqrt{\alpha_1} \cdot x + \frac{\alpha_2}{2\sqrt{\alpha_1}}) - \text{erf}(\frac{\alpha_2}{2\sqrt{\alpha_1}}) \right].$$

- Conditional pdf of Γ with AF relay protocol

$$f_{\Gamma_{\text{r}}^{\text{AF}}}(\gamma) = 2\beta_1 \gamma e^{-\beta_2 \gamma} \left\{ \beta_2 K_1(2\beta_1 \gamma) + 2\beta_1 K_0(2\beta_1 \gamma) \right\},$$

where $\Gamma_{\text{r}}^{\text{AF}} = \frac{\Gamma_{\text{SR}} \cdot \Gamma_{\text{RD}}}{\Gamma_{\text{SR}} + \Gamma_{\text{RD}}}$, $\beta_1 = \frac{1}{\sqrt{\bar{\gamma}_{\text{SR}} \cdot \bar{\gamma}_{\text{RD}}}}$, $\beta_2 = \frac{1}{\bar{\gamma}_{\text{SR}}} + \frac{1}{\bar{\gamma}_{\text{RD}}}$,


$$\beta_3 = \frac{1}{\bar{\gamma}_{\text{SD}}} + \frac{1}{\bar{\gamma}_{\text{SR}}} + \frac{1}{\bar{\gamma}_{\text{RD}}},$$

$$\mathfrak{A}(x; \beta_1, \beta_3) = \int_0^x 2\beta_1(t^2 + 2t) e^{-\beta_3(t^2 + 2t)} K_1(2\beta_1(t^2 + 2t)) dt.$$

$$\text{ASE} = \mathbf{P}_{\text{direct}} \cdot \frac{\bar{\mathbf{C}}_d}{\mathbf{A}_{\text{aff}}^S} + \mathbf{P}_{\text{relay}} \cdot \frac{1}{2} \left(\frac{\bar{\mathbf{C}}_r}{\mathbf{A}_{\text{aff}}^S} + \frac{\bar{\mathbf{C}}_r}{\mathbf{A}_{\text{aff}}^R} \right),$$

- $\mathbf{C}_d, \mathbf{C}_r$: ergodic capacity under direct/relay transmission mode.
- $\mathbf{P}_{\text{direct}}, \mathbf{P}_{\text{relay}}$: probability of direct/relay transmission.
- $\mathbf{A}_{\text{aff}}^S$: affected area of source-destination transmission.
- $\mathbf{A}_{\text{aff}}^R$: affected area of relay-destination transmission.

Optimal Relay Locations

Figure: The effect of the distance between source and relay node r_{SR} on ASE and spectral efficiency with DF relay protocol for different angle θ .

- Optimal relay location is the midpoint between source and destination when $\theta = 0$.
- When θ is small, ASE varies dramatically as the position of relay changes.
- When θ is large, the distance r_{SR} has little effect on ASE.
- Similar observation can be observed for AF-based relay networks.

Effect of Source Transmission Power

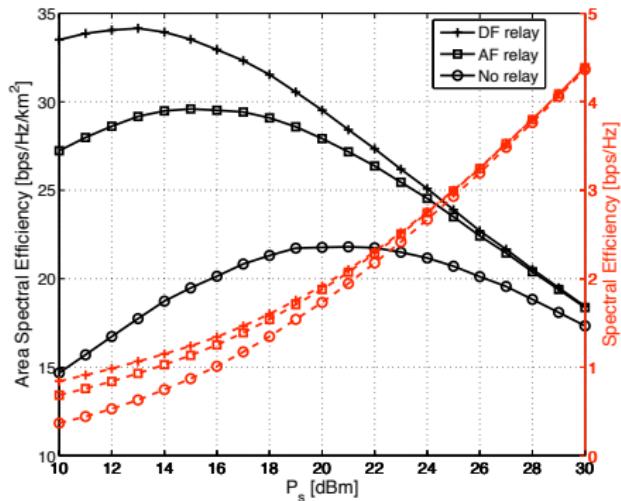


Figure: The effect of the source node transmission power P_s on ASE with DF and AF relay protocol.

- Cooperative relaying achieves better ASE than conventional network.
 - Opportunistic transmission mode selection.
 - Smaller affected area.
- Optimal transmit power P_s to maximize ASE exists.
- Increasing the transmission power can lead to a higher spectral efficiency but NOT necessarily increase ASE.

GASE for Underlay Cognitive Radio Transmission

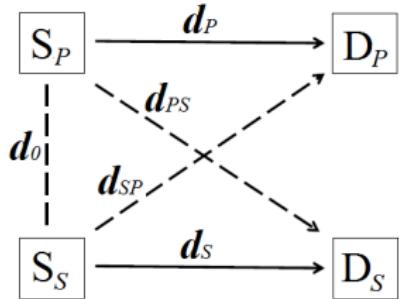


Figure: System model of underlay cognitive radio transmission.

Secondary transmitter S_S opportunistically transmits to secondary receiver D_S using the same frequency bandwidth of primary transmission S_P-D_P as long as the interference constraint on D_P is satisfied.

Parallel Transmission Scenario

- Parallel secondary transmission occurs if the experienced interference power at D_P is less than the threshold I_{th} , i.e. $P_2 \cdot Z/d_{SP}^a < I_{th}$, where P_2 is the transmission power of S_S .
- Affected area with parallel secondary transmission

$$A_{CR}^{pt} = \int_{\Omega} \mathbb{P} \left\{ P_r(r_p) + P_r(r_s) \geq P_{\min} \right\} d\Omega,$$

where r_p and r_s are the distances of the incremental area to the primary transmitter and secondary transmitter, respectively.

- Ergodic capacity

$$\bar{C}_{CR} = \underbrace{\int_0^{\infty} \log_2(1 + \gamma) \cdot dF_{\Gamma_p}(\gamma)}_{\bar{C}_{CR}^p} + \underbrace{\int_0^{\infty} \log_2(1 + \gamma) \cdot dF_{\Gamma_s}(\gamma)}_{\bar{C}_{CR}^s},$$

- $\bar{C}_{CR}^p, \bar{C}_{CR}^s$: ergodic capacity of primary and secondary transmission.
- Γ_p, Γ_s : received SINR at D_P and D_S .

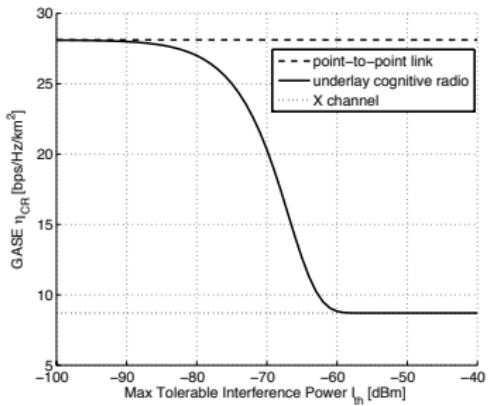
Overall GASE

- GASE when parallel transmission occurs

$$\eta_{CR}^{pt} = \frac{\bar{C}_{CR}^p + \bar{C}_{CR}^s}{A_{CR}^{pt}}.$$

- When $P_2 \cdot Z/d_{SP}^a \geq I_{th}$, the transmission scenario reduces to point-to-point primary transmission only case, with GASE given by

$$\eta_{CR}^{st} = \frac{\frac{1}{\ln 2} E_1 \left(\frac{d^a N}{P_1} \right) \exp \left(\frac{d^a N}{P_1} \right)}{\frac{1}{a} \Gamma \left(\frac{2}{a} \right) \left(\frac{P_1}{P_{\min}} \right)^{2/a}},$$


where P_1 is the primary source transmission power.

- Overall GASE of underlay cognitive transmission

$$\eta_{CR} = \mathcal{P} \cdot \eta_{CR}^{pt} + (1 - \mathcal{P}) \cdot \eta_{CR}^{st},$$

where $\mathcal{P} = \mathbb{P} \{ P_2 \cdot Z/d_{SP}^a < I_{th} \}$.

Numerical Examples

Figure: The effect of the max tolerable interference power I_{th} on GASE.

GASE of underlay cognitive radio transmission include those of the point-to-point transmission and X channel transmission as special case.

- When $I_{th} \rightarrow 0$, converge to the point-to-point transmission case.
- When $I_{th} \rightarrow \infty$, converge to the X channel case.

Numerical Examples

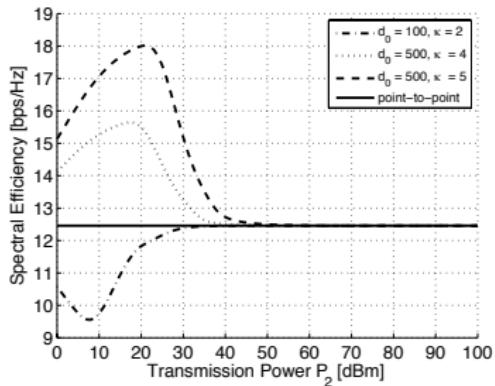


Figure: Spectral Efficiency

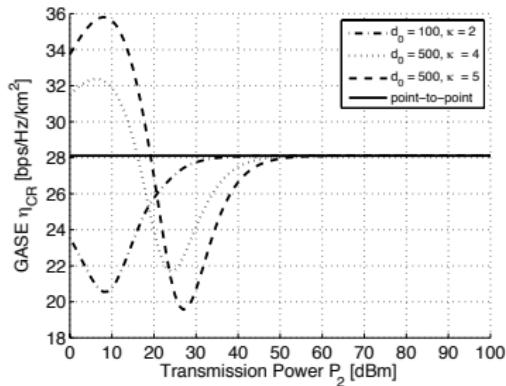


Figure: GASE

- When interfering transmitter is close to target receiver underlay cognitive transmission deteriorates both GASE and spectral efficiency.
- When interfering transmitter is far from target receiver
 - Different behavior in terms of spectral efficiency and GASE.
 - Both asymptotically approach to point-to-point link.

- Quantify spatial spectrum utilization efficiency of wireless systems.
- Characterize the spatial footprint of wireless transmission with affected area.
- Develop new performance metric for arbitrary wireless transmission.
- Capture the negative effect of radio power emission.
- On-going effort: GASE analysis for ad hoc wireless networks.