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To fix ideas: example problem
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Geometry

2D Model

Simple stationary model of groundwater flow with stochastic data

−∇x · (κ(x, ω)∇xu(x, ω)) = f(x, ω) & b.c., x ∈ G ⊂ Rd

−κ(x, ω)∇xu(x, ω) = g(x, ω), x ∈ Γ ⊂ ∂G , ω ∈ Ω.

Parameter q(x, ω) = log κ(x, ω) is uncertain,

the stochastic conductivity κ, as well as f and g — sinks and sources.
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Realisation of κ(x, ω)
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Mathematical setup

Consider operator equation, physical system modelled by A:

A(u) = f u ∈ U , f ∈ F ,

⇔ ∀v ∈ U : 〈A(u), v〉 = 〈f, v〉,
U — space of states, F = U∗ — dual space of actions / forcings.

Solution operator: u = U(f), inverse of A.

Operator depends on parameters q ∈ Q,

hence state u is also function of q:

A(u; q) = f(q) ⇒ u = U(f ; q).

Measurement operator Y with values in Y:

y = Y (q;u) = Y (q, U(f ; q)).
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Forward parametric problem

Parametric elements: operator A(·; q), rhs f(q), state u(q),→ r(q).

Goal are representations of r(q) ∈ W, i.e. r : Q →W.

Help from inner product 〈·|·〉R on subspace R ⊂ RQ.

In case Q is a measure / probability space, R = L2.

To each parametric element corresponds linear map

R :W 3 r̂ 7→ 〈r̂|r(·)〉R ∈ R.

Key is self-adjoint positive map C = R∗R :W →W.

Spectral factorisation of C leads to Karhunen-Loève representation,

a tensor product rep., corresponds to SVD of R (a.k.a. POD).

Each factorisation C = B∗B leads to a tensor representation,

(ex.: smoothed white noise)

a 1–1 correspondence between factorisations and representations.
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Setting for the identification process

General idea:

We observe / measure a system, whose structure we know in principle.

The system behaviour depends on some quantities (parameters),

which we do not know ⇒ uncertainty.

We model (uncertainty in) our knowledge in a Bayesian setting:

as a probability distribution on the parameters.

We start with what we know a priori, then perform a measurement.

This gives new information, to update our knowledge (identification).

Update in probabilistic setting works with conditional probabilities

⇒ Bayes’s theorem.

Repeated measurements lead to better identification.
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Inverse problem

For given f , measurement y is just a function of q.

This function is usually not invertible ⇒ ill-posed problem,

measurement y does not contain enough information.

In Bayesian framework state of knowledge modelled in a probabilistic way,

parameters q are uncertain, and assumed as random.

Bayesian setting allows updating / sharpening of information

about q when measurement is performed.

The problem of updating distribution—state of knowledge of q

becomes well-posed.

Can be applied successively, each new measurement y and

forcing f —may also be uncertain—will provide new information.
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Model with uncertainties

For simplicity assume that Q is a Hilbert space,

and q(ω) has finite variance — ‖q‖Q ∈ S := L2(Ω), so that

q ∈ L2(Ω,Q) ∼= Q⊗ L2(Ω) = Q⊗ S =: Q.

System model is now

A(u(ω); q(ω)) = f(ω) a.s. in ω ∈ Ω,
state u = u(ω) becomes U-valued random variable (RV),

element of a tensor space U = U ⊗ S.

As variational statement:

∀v ∈ U : E (〈A(u(·); q(·)), v〉) = E (〈f(·), v〉) =: 〈〈f, v〉〉.

Leads to well-posed stochastic PDE (SPDE).
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Representation of randomness

Parameters q modelled as Q-valued (a vector space) RVs on some

probability space (Ω,P,A), with expectation operator E (q) = q̄.

RVs q : Ω → Q (and u(q)) may be represented in the following ways:

Samples: the best known representation, i.e. q(ω1), . . . , q(ωN), . . .

Distribution of q. This is the push-forward measure q∗P on Q.

Moments of q, like E (q ⊗ . . .⊗ q) (mean, covariance, ...).

Functional/Spectral: Functions of other (known) RVs, like Wiener’s

polynomial chaos, i.e. q(ω) = q(θ1(ω)), . . . , θM(ω), . . .) =: q(θ).

Sampling and functional representation work with vectors,

allows linear algebra in computation.
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Computational approaches

Representation determines algorithms:

• Distributions −→ Kolmogorov / Fokker-Planck equations.

Needs new software, deterministic solver u = S(f, q) not used.

• Moments −→ New (sometimes difficult) equations.

Needs new software, deterministic solver mostly not used.

• Sampling −→ Domain of direct integration methods;

(quasi) Monte Carlo, sparse (Smolyak) grids, etc.

Obviously non-intrusive; software interface → solve.

• Functional / Spectral −→
(1) Interpolation / collocation. Based on samples of solution,

non-intrusive, solve interface.

(2) Galerkin at first sight intrusive, but with quadrature is also

non-intrusive, precond. residual interface. Allows greedy rank-1
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Conditional probability and expectation

With state u ∈ U = U ⊗ S a RV, the quantity to be measured

y(ω) = Y (q(ω), u(ω))) ∈ Y := Y ⊗ S
is also uncertain, a random variable.

A new measurement z is performed, composed from the

“true” value y ∈ Y and a random error ε: z(ω) = y + ε(ω) ∈ Y .

Classically, Bayes’s theorem gives conditional probability

P(Iq|Mz) =
P(Mz|Iq)
P(Mz)

P(Iq);

expectation with this posterior measure is conditional expectation.

Kolmogorov starts from conditional expectation E (·|Mz),

from this conditional probability via P(Iq|Mz) = E
(
χIq|Mz

)
.
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Update

The conditional expectation is defined as

orthogonal projection onto the closed subspace L2(Ω,P, σ(z)):

E(q|σ(z)) := PQ∞q = argminq̃∈L2(Ω,P,σ(z)) ‖q − q̃‖
2
L2

The subspace Q∞ := L2(Ω,P, σ(z)) represents the available

information, estimate minimises Φ(·) := ‖q − (·)‖2 over Q∞.

More general loss functions than mean square error are possible.

The update, also called the assimilated value

qa(ω) := PQ∞q = E(q|σ(z)), is a Q-valued RV

and represents new state of knowledge after the measurement.

Reduction of variance—Pythagoras: ‖q‖2L2
= ‖q − qa‖2L2

+ ‖qa‖2L2

Doob-Dynkin: Q∞ = {ϕ ∈ Q : ϕ = φ ◦ Y, φ measurable }
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Important points I

The probability measure P is not the object of desire.

It is the distribution of q, a measure on Q—push forward of P:

q∗P(E) := P(q−1(E)) for measurable E ⊆ Q.

Bayes’s original formula changes P, leaves q as is.

Kolmogorov’s conditional expectation changes q, leaves P as is.

In both cases the update is a new q∗P.

P (a probability measure) is on positive part of unit sphere,

whereas q is free in a vector space.

This will allow the use of (multi-)linear algebra

and tensor approximations.
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Important points II

Identification process:

• Use forward problem A(u(ω); q(ω)) = f(ω) to forecast

new state uf(ω) and measurement yf(ω) = Y (q(ω), uf(ω))).

• Perform minimisation of loss function to obtain update map / filter.

• Use innovation in inverse problem to update forecast qf
to obtain assimilated (updated) qa with update map.

• All operations in vector space, use tensor approximations throughout.
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Approximation

Minimisation equivalent to orthogonality: find φ ∈ L0(Y,Q)

∀p ∈ Q∞ : 〈〈DqaΦ(qa(φ)), p〉〉L2 = 〈〈q − qa, p〉〉L2 = 0,

Approximation of Q∞: take Qn ⊂ Q∞

Qn := {ϕ ∈ Q : ϕ = ψn ◦ Y, ψn a nth degree polynomial}
i.e. ϕ = H0 + H1 Y + · · ·+ Hk Y ⊗k + · · ·+ Hn Y ⊗n,

where Hk ∈ L k
s (Y,Q) is symmetric and k-linear.

With qa(φ) = qa(( H
0 , . . . , Hk , . . . , Hn )) =

∑n
k=0 Hk z⊗k = PQnq,

orthogonality implies

∀` = 0, . . . , n : D( H` )Φ(qa( H
0 , . . . , Hk , . . . , Hn )) = 0
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Determining the n-th degree Bayesian update

With the abbreviations

〈p⊗ v⊗k〉 := E
(
p⊗ v⊗k

)
=

∫
Ω

p(ω)⊗ v(ω)⊗k P(dω),

and Hk 〈z⊗(`+k)〉 := 〈z⊗` ⊗ ( Hk z⊗k)〉 = E
(
z⊗` ⊗ ( Hk z⊗k)

)
,

we have for the unknowns ( H0 , . . . , Hk , . . . , Hn )

` = 0 : H0 · · ·+ Hk 〈z⊗k〉 · · ·+ Hn 〈z⊗n〉 = 〈q〉,

` = 1 : H0 〈z〉 · · ·+ Hk 〈z⊗(1+k)〉· · ·+ Hn 〈z⊗(1+n)〉 = 〈q ⊗ z〉,
... . . . ... ...

` = n : H0 〈z⊗n〉· · ·+ Hk 〈z⊗(n+k)〉· · ·+ Hn 〈z⊗2n〉 = 〈q ⊗ z⊗n〉
a linear system with symmetric positive definite

Hankel operator matrix (〈z⊗(`+k)〉)`,k.
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Bayesian update in components

For short ∀` = 0, . . . , n :
n∑
k=0

Hk 〈z⊗(`+k)〉 = 〈q ⊗ z⊗`〉,

For finite dimensional spaces, or after discretisation,

in components (or à la Penrose in ‘symbolic index’ notation):

let q = (qm), z = (z), and Hk = ( Hk m
1...k

), then:

∀` = 0, . . . , n;

〈z1 · · · z`〉 ( H0 m) + · · ·+ 〈z1 · · · z`+1 · · · z`+k〉 ( Hk m
`+1...`+k

)+

· · ·+ 〈z1 · · · z`+1 · · · z`+n〉 ( Hn m
`+1...`+n

) = 〈qmz1 · · · z`〉.
(Einstein summation convention used)

matrix does not depend on m—it is identically block diagonal.
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Special cases

For n = 0 (constant functions) ⇒ qa = H0 = 〈q〉 (= E (q)).

For n = 1 the approximation is with affine functions

H0 + H1 〈z〉 =〈q〉
H0 〈z〉+ H1 〈z ⊗ z〉=〈q ⊗ z〉

=⇒ (remember that [covqz] = 〈q ⊗ z〉 − 〈q〉 ⊗ 〈z〉 )

H0 = 〈q〉 − H1 〈z〉
H1 (〈z ⊗ z〉 − 〈z〉 ⊗ 〈z〉) =〈q ⊗ z〉 − 〈q〉 ⊗ 〈z〉
⇒ H1 = [covqz][covzz]

−1 (Kalman’s solution),

H0 = 〈q〉 − [covqz][covzz]
−1〈z〉,

and finally

qa = H0 + H1 z = 〈q〉+ [covqz][covzz]
−1(z − 〈z〉).
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Case with prior information

Here we have prior information Qf and prior estimate qf(ω) (forecast)

and measurements z generating via Y a subspace Qy ⊂ Q.

We now need projection onto Qa = Qf + Qy,

with reformulation as an orthogonal direct sum:

Qa = Qf + Qy = Qf ⊕ (Qy ∩Q⊥f ) = Qf ⊕Q∞.

The update / conditional expectation /

assimilated value is the orthogonal projection

qa = qf + PQ∞q = qf + q∞,

where q∞ is the innovation.

Compute qa by approximating: Qn ⊂ Q∞. We now take n = 1.
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Simplification

The case n = 1—linear functions, projecting onto Q1—is well known:

this is the linear minimum variance estimate q̂a.

Theorem: (Generalisation of Gauss-Markov)

q̂a(ω) = qf(ω) + H1 (z(ω)− yf(ω)),

where the linear Kalman gain operator H1 : Y → Q is

H1 := [covqz][covzz]
−1 = [covqy][covyy + covεε]

−1.

(The normal Kalman filter is a special case.)

Or in tensor space q ∈ Q = Q⊗ S:

q̂a = qf + ( H1 ⊗ I)(z − yf).
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Deterministic model, discretisation, solution

Remember operator equation: A(u) = f u ∈ U , f ∈ F .

Solution is usually by first discretisation

A(u) = f u ∈ UN ⊂ U , f ∈ FN = U∗N ⊂ F ,
and then (iterative) numerical solution process

uk+1 = S(uk), lim
k→∞

uk = u.

S evaluates (pre-conditioned) residua f −A(uk).

Similarly for model with uncertainty:

A(u(ω); q(ω)) = f(ω),

assume {vj}Nj=1 a basis in UN , then the approx. solution in UN ⊗ S

u(ω) =

N∑
j=1

uj(ω)vj.
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Discretisation by functional approximation

Choose subspace SB ⊂ S with basis {Xβ}Bβ=1,

make ansatz for each uj(ω) ≈
∑
β u

β
jXβ(ω), giving

u(ω) =
∑
j,β

uβjXβ(ω)vj =
∑
j,β

uβjXβ(ω)⊗ vj.

Solution is in tensor product UN,B := UN ⊗ SB ⊂ U ⊗ S = U .

State u(ω) represented by tensor u := uBN := {uβj }
β=1,...,B
j=1,...,N ,

(β is usually multi-index)

similarly for all other quantities, fully discrete forward model

is obtained by weighting residual with Ξα with ansatz inserted:

∀α :

〈
Ξα(ω),f(ω)−A

∑
j,β

uβjXβ(ω)vj; q(ω)

〉
S

= 0.
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Stochastic forward problem

⇒ generally coupled system of equations for u = {uβj }:
A(u;q) = f , y = Y(q;u).

• If Ξα(·) = δ(· −ωα), system decouples −→ collocation / interpolation;

may use for each ωα original solver S (obviously non-intrusive).

• If Ξα(·) = Xα(·) −→ Bubnov-Galerkin conditions; with numerical

integration uses also original solver S and is also non-intrusive.

• In greedy rank-one update tensor solver one uses Bubnov-Galerkin

conditions (proper gener. decomp. (PGD)/ succ. rank-1 upd. (SR1U)/

alt. least squ. (ALS)), also possible by non-intrusive use of original S.

For update: H1 = H1 ⊗ I computed analytically (Xβ =Hermite basis)

[covqy] =
∑
α>0α! qα(yα)T ; [covyy] =

∑
α>0α! yα(yα)T .
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Important points III

Update formulation in vector spaces.

This makes tensor representation possible .

Parametric problems lead to tensor (or separated) representations.

Sparse approximation by low-rank representation.

Possible for forward problem (progressive or iterative).

Possible for inverse problem.

Low-rank approximation can be kept throughout update.
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Example 1: Identification of multi-modal dist

Setup: Scalar RV x with

non-Gaussian multi-modal

“truth” p(x); Gaussian prior;

Gaussian measurement errors.

Aim: Identification of p(x).

10 updates of N = 10, 100, 1000

measurements.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing



27

Example 2: Lorenz-84 chaotic model

Setup: Non-linear, chaotic system

u̇ = f(u), u = [x, y, z]

Small uncertainties in initial

conditions u0 have large impact.

Aim: Sequentially identify state ut.

Methods: PCE representation and

PCE updating and

sampling representation and

(Ensemble Kalman Filter)

EnKF updating.
Poincaré cut for x = 1.
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Example 2: Lorenz-84 PCE representation

PCE: Variance

reduction and shift of

mean at update points.

Skewed structure clearly

visible, preserved by

updates.
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Example 2: Lorenz-84 non-Gaussian identification

PCE

truth × measurement +

EnKF

posterior prior
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Example 3: diffusion—schematic representation

  

qA( ,u)

f u=S(q,f)

Y(q,u)
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Measurement patches
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Convergence plot of updates
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Forecast and Assimilated pdfs
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Spatial Error Distribution
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Example 4: plate with hole

Forward problem: the comparison of the mean values of the total

displacement fo r deterministic, initial and stochastic configuration
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Relative variance of shear modulus estimate

Relative RMSE of variance [%] after 4th update in 10% equally

distributed m easurment points
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Probability density shear modulus

Comparison of prior and posterior distribution
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Conclusion

• Parametric problems lead to tensor representation.

• Inverse problems via Bayes’s theorem.

• Bayesian update is a projection.

• For efficiency try and use sparse representation throughout; ansatz in

low-rank tensor products, saves storage as well as computation.

• Bayesian update compatible with low-rank representation.
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