
Approximation of Stochastic PDEs

Approximation of Stochastic PDEs

Involving White Noises

Hassan Manouzi

Laval University
hm@mat.ulaval.ca

AMSC seminar



Approximation of Stochastic PDEs

Outline

Introduction

Elements of white noise theory

Four examples
The pressure equation
Linear SPDE with additive and multiplicative noises
Helmholtz equation with stochastic refractive index
Stochastic schallow water equations

Conclusions



Approximation of Stochastic PDEs

Introduction

Fluctuations

I Many physical and engineering models involve
I uncertain data: forces, sources, initial and boundary

conditions, ...



Approximation of Stochastic PDEs

Introduction

Fluctuations

I Many physical and engineering models involve
I uncertain data: forces, sources, initial and boundary

conditions, ...
I uncertain parameters: conductivity, diffusivity, refractive index,

...



Approximation of Stochastic PDEs

Introduction

Fluctuations

I Many physical and engineering models involve
I uncertain data: forces, sources, initial and boundary

conditions, ...
I uncertain parameters: conductivity, diffusivity, refractive index,

...

I In more complex physical models, the data and coefficients
are difficult to measure at all locations, and are instead
modeled as random fields.
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Introduction

SPDE’s involving white noise

I Much of the literature on SPDE’s, allows for processes with
zero correlation length, known as white noise.

I Pde’s perturbed by spatial noise provide an important
stochastic model in applications:

I Pressure equation for fluid in porous media
I Navier-Stokes equations driven by multiplicative and additive

noises
I Non linear Schrodinger equation with a stochastic potential
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Introduction

SPDE’s involving white noise

There are at least two different answers to the questions of how to
pose and solve SPDE’s involving white noises.

I The first answer is to blame the roughness of the white noise
for the non-solvability of theses equations. Indeed, if the white
noise is replaced by colored noise, then there exist ordinary
solutions to many SPDE’s. But the white noise is a canonical
object, this is not the case for colored noise.
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Introduction

SPDE’s involving white noise

I The second answer to the question is to use the notion of a
generalized solution to SPDEs containing white noise.

I Walsh has considered a linear SPDE with additive white noise.
He showed that for spatial dimension > 1 , it is in general not
possible to represent the solution as an ordinary stochastic
field, but as a distribution (generalized stochastic process).
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Introduction

SPDE’s involving white noise

I Example : Heat equation driven by a multiplicative
space-time white noise W (t, x).

ut = ∆u + uẆ

This equation has neither weak nor strong solutions in the
traditional sense.

I The solution must be defined as a generalized random element

x −→ u(x , ·) ∈ (S)−1, x ∈ R
d

where (S)−1 is the Kondratiev space of distribution-valued
stochastic processes.
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Introduction

SPDE’s involving white noise

This approach has several advantages:

I SPDEs can be interpreted in the usual strong sense with
respect to x .

I The space (S)−1 is equipped with a multiplication, the Wick
product �. This gives a natural interpretation of SPDEs where
the noise or other terms appear multiplicatively.
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Introduction

Other methods

I Recently, a systematic approach for formulating and
discretizing SPDE’s with smoothed random data known as
SFEM has become popular in the engineering community.

I Spectral finite element methods using formal Hermite
polynomial chaos (Ghanem, Knio, Le Maitre, Najm, Xiu,
Karniadakis,..)

I Collocation finite element methods using tensor product of
the space of random variables (Babuška, Tempone, Zouraris,
Schwab, ...)



Approximation of Stochastic PDEs

Elements of white noise theory

Probability space

I The white noise space

Ω =
(

S ′(R+ × R
d),B(S ′(R+ × R

d), µ
)



Approximation of Stochastic PDEs

Elements of white noise theory

Probability space

I The white noise space

Ω =
(

S ′(R+ × R
d),B(S ′(R+ × R

d), µ
)

I B - Borel σ algebra generated by the weak topology in S ′.



Approximation of Stochastic PDEs

Elements of white noise theory

Probability space

I The white noise space

Ω =
(

S ′(R+ × R
d),B(S ′(R+ × R

d), µ
)

I B - Borel σ algebra generated by the weak topology in S ′.
I µ: the unique white noise probability measure on B , given by

the Bochner-Milnos theorem such that for all f ∈ S(R+ × R
d)

Eµ[e
i〈·,f 〉] :=

∫

S′

e i〈ω,f 〉dµ(ω) = e
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L2(R+×Rd )
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Elements of white noise theory

Probability space

I The white noise space

Ω =
(

S ′(R+ × R
d),B(S ′(R+ × R

d), µ
)

I B - Borel σ algebra generated by the weak topology in S ′.
I µ: the unique white noise probability measure on B , given by

the Bochner-Milnos theorem such that for all f ∈ S(R+ × R
d)

Eµ[e
i〈·,f 〉] :=

∫

S′

e i〈ω,f 〉dµ(ω) = e
− 1

2‖f ‖
2

L2(R+×Rd )

I L2(µ) := L2(S ′(R+ × R
d),B, µ) with the inner product

(F ,G ) = Eµ(FG )
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Elements of white noise theory

Fourier-Hermite polynomials

I Let {ξi ⊗ ηj} be an orthonormal basis for L2(R+ × R
d ).

I {ηj}j∈N ⊂ S(Rd ) denote the orthonormal basis of L2(Rd )
constructed by taking tensor products of Hermite functions.

I {ξi}i∈N be the orthonormal basis of L2(R+) consisting of the
Laguerre functions of order 1

2 .

I Let I denote the set of all multi-indices α = (αij) with αij ∈ N0

(i , j ∈ N) with finite length l(α) = max{ij ;αij 6= 0}.
For each α ∈ I we define the stochastic variable

Hα(ω) :=

l(α)
∏

i ,j=1

hαij (〈ω, ξi ⊗ ηj〉).

where hαij are the Hermite polynomials.
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Elements of white noise theory

Wiener-Itô chaos expansion

The family {Hα : α ∈ I} constitutes an orthogonal basis for
L2(µ) := L2(S ′,B(S ′), µ).
Then each f ∈ L2(µ) has a unique chaos expansion representation:

f (t, x , ω) =
∑

α∈I

fα(t, x)Hα(ω),

f (t, x , ω) = f0(x) +
∑

α∈I,α6=0

fα(t, x)Hα(ω)

fα = α-th chaos coefficient of f
f0 = Eµ[f ], Eµ[f

2] =
∑

α α! | fα |2
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Elements of white noise theory

Gaussian processes with dependent increments

I m(., .) : (R+ ×R
d )

2 −→ R

m(., x) ∈ L2(R+ × R
d) ,

∂1+dm(., x)

∂x0∂x1 · · · ∂xd
∈ S ′(R+ ×R

d )

and we let:

v(y , x) =

∫

R+×Rd

m(u, y)m(u, x)du

I The stochastic variable with dependent increments Bv(x , ·) is
defined by

Bv(x , ω) := 〈ω,m(., x)〉 =
∫

R+×Rd

m(u, x)dB(u, ω), ω ∈ S ′(R+×R
d
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Elements of white noise theory

I This process defines a Gaussian process on R+ × R
d .

Its covariance function is given by

v(y , x) =

∫

S′(R+×Rd )
Bv(x , ω)Bv (y , ω)dµ(ω)
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Elements of white noise theory

Gaussian processes with dependent increments: examples

I Example 1: (Multi-parameter ordinary Brownian motion).
If m(u, x) = 1[0,x0]×[0,x1]×···×[0,xd ](u), then the stochastic
process Bv(x , ω) is the multi-parameter ordinary Brownian
motion B(x , ω) and we have

v(y , x) =
d
∏

i=0

min(xi , yi )
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Elements of white noise theory

Example 2: (Multi-parameter fractional Brownian motion)

I Let H = (H0,H1, · · · ,Hd ) ∈ (]0, 1[)1+d (Hurst vector) ,
f = f0 ⊗ f1 ⊗ · · · ⊗ fd ∈ S(R+ × R

d ).
Define

MHf (x) =
d
∏

j=0

(MHj
fj)(xj)

where

MHj fj(xj ) =























Kj

∫

R

fj(xj − λ)− fj(xj )

| λ | 32−Hj
dλ if 0 < Hj <

1
2

fj(xj ) if Hj =
1
2

Kj

∫

R

fj (λ)

| xi − λ | 32−Hj
dλ if 1

2 < Hj < 1
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Elements of white noise theory

Example 2: (Multi-parameter fractional Brownian motion)

I The fractional Brownian motion BH is defined by
BH(x , ω) := 〈ω,MH(1]0,x0[··· ]0,xd [)〉 it holds

v(y , x) = (
1

2
)1+d

d
∏

j=0

(

| xj |2Hj + | yj |2Hj − | xj − yj |2Hj

)
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Elements of white noise theory

I Example 3: (Gaussian process with short range

dependency).
Let m(u, t) := t2 exp (−(u − t)2).
Hence v(s, t) =

√
πt2s2 exp(−(t − s)2/2) and the process Bv

t

is a short range Brownian motion.
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Elements of white noise theory

Wiener-Itô chaos expansion

B
v (x , ·) ∈ L

2(S ′)

I The chaos expansion of Brownian motion Bv is

Bv (x , ω) =

∞
∑

i ,j=1

(m(·, x), ξi ⊗ ηj)L2(R+×Rd ) Hεij (ω)

I Examples:

B(x, ω) =
∑

∞
i,j=1

(

∫ x0
0 ξi (s)ds

∫ xd
−∞

· · ·
∫ x1
−∞

ηj (y1, · · · , yd )dy1 · · · dyd

)

Hεij
(ω)

BH (x, ω) =
∑

∞
i,j=1

(

∫ x0
0 MHξi (s)ds

∫ xd
−∞

· · ·
∫ x1
−∞

MHηj (y1, · · · , yd )dy1 · · · dyd

)

Hεij
(ω)
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Elements of white noise theory

Space of the Kondratiev test functions

I Certain SPDE’s involving multiplicative noises don’t possess
solutions with finite variance.

I We must extend our notion of a solution to include solutions
with infinite variance in larger space of random elements.

I These spaces are the so-called weighted stochastic spaces
which include the Hida and Kondratieve spaces and whose
elements are characterized by their Wiener chaos coefficients.



Approximation of Stochastic PDEs

Elements of white noise theory

Space of the Kondratiev test functions

I For k = 1, 2, · · · and −1 ≤ ρ ≤ 1, let

(S)ρ,k =

{

f ∈ L2(µ) : f (ω) =
∑

α

cαHα(ω), cα ∈ R

}

such that

‖f ‖2(S)ρ,k :=
∑

α

(α!)1+ρc2α(2N)
kα < ∞

where

(2N)kα =

m
∏

i ,j=1

(2(i − 1)m + j)αij , if α = (αij )1≤i ,j≤m

I The space of Kondratiev test functions (S)ρ, is defined by

(S)ρ =
∞
⋂

k=1

(S)ρ,k
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Elements of white noise theory

Space of Hida distributions

I The space of Hida distributions, (S)−ρ, is defined by

(S)−ρ =
∞
⋃

k=1

(S)−ρ,k

I We have
(S)ρ ⊂ L2(µ) ⊂ (S)−ρ
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Elements of white noise theory

White noise with dependent increments

I

W v (x , ω) =
∂1+d

∂x0 · · · ∂xd
Bv(x , ω) in (S)−ρ for all x ∈ R

d+1

I We have
W v(x , .) ∈ (S)−ρ

W v(x , .) /∈ L2(µ)
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Elements of white noise theory

White noise with dependent increments

I Examples:

W (x , ω) =
∑

i ,j

ei (x0)ηj(x1, · · · , xd )Hεij (ω)

WH(x , ω) =
∑

i ,j

MHei (x0)MHηj(x1, · · · , xd )Hεij (ω)
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Elements of white noise theory

Stochastic Sobolev spaces

Let V be a Hilbert space. We define the stochastic Hilbert spaces
(S)ρ,k,V as the set of all formal sums

(S)ρ,k,V :=

{

v =
∑

α∈I

vαHα : vα ∈ V and ‖v‖ρ,k,V < ∞
}

where ‖ · ‖ρ,k,V denote the norm

‖u‖ρ,k,V :=

(

∑

α∈I

(α!)1+ρ‖uα‖2V (2N)kα

)
1
2

(u, v)ρ,k,V :=
∑

α∈I

(uα, vα)V (α!)
1+ρ(2N)kα, u, v ∈ (S)ρ,k,V

(S)ρ,k,V ∼= L(V ′, (S)ρ,k) ∼= V ⊗ (S)ρ,k
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Elements of white noise theory

Stochastic Sobolev spaces

I If D ⊂ R
d is bounded and 0 < T < ∞, then we have:

W ,WH ∈ (S)ρ,k,L2([0,T ]×D) for any− 1 ≤ ρ ≤ 1 and k < 0

W ,WH ∈ (S)−1,l ,L∞([0,T ]×D) for any l < 0
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Elements of white noise theory

Wick product

I The Wick product f � g of two formal series f =
∑

α fαHα,

g =
∑

α gαHα is defined as f � g :=
∑

α,β∈I

fαgβHα+β

Let D ⊂ R
d be open, and let l ∈ R. We introduce the Banach

space

Fl (D) = {f =
∑

α∈I

fαHα, fα : D −→ R measurable ∀α ∈ I}

‖f ‖l ,∗ = ess sup
x∈D

(

∑

α∈I

| fα(x) | (2N)lα
)

< ∞
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Elements of white noise theory

Wick product

If f ∈ Fl (D) and if g ∈ S−1,k,L2(D) with k ≤ 2l , then

f � g ∈ S−1,k,L2(D)

‖f � g‖−1,k,0 ≤ ‖f ‖l ,∗‖g‖−1,k,0
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Elements of white noise theory

Wick exponential

I The Wick-exponential of the standard white noise is defined by

exp�(W (t, x)) =
∑

α∈I
1
α!

(

∏l(α)
i ,j=1(ei (t)ηj (x))

αij

)

Hα

exp�(WH(t, x)) =
∑

α∈I
1
α!

(

∏l(α)
i ,j=1(MHei (t)MHηj(x))

αij

)

Hα

I

exp� W , exp�WH ∈ (S)−1,l ,L∞([0,T ]×D) for l < 0
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Four examples

The pressure equation

The pressure equation

I We want to solve the following problem:

(1)























Find p(x , ω) solution of the linear SPDE

−∇ · (κ(x , ω) � ∇p) = f , in D × Ω

p(x , ω) = 0, on ∂D × Ω

I For the flow in a porous medium, p(x , ω) denotes the
pressure, κ is the permeability of the medium, f represents
the external forces (for example sources or sinks in an
oil-reservoir). We allow f and κ to be generalized stochastic
distributions, assuming their chaos expansion explicitly known.
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Approximation of Stochastic PDEs

Four examples

The pressure equation

I Example 1:
κ(x , ω) = κ0(x) + λe�W

v (x ,ω)

I Example 2: κ(x , ω) = exp(G (x , ω))

G (x , ω) =
∞
∑

m=1

√

λmGm(x)Xm(ω)

κ(x , ω) =
∑

α∈I

κα(x)Hα(ω)

κα(x) =
〈κ〉√
α!

∞
∏

m=1

(

√

λmGm(x)
)αm
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Four examples

The pressure equation

The mixed formulation







u(x , ω)− K (x , ω) � ∇p(x , ω) = 0 in D ×Ω,
− div u(x , ω) = f (x , ω) in D ×Ω,
p(x , ω) = 0 on ∂D × Ω

a(u, v) := (K �(−1)�u, v)−1,k,0,
b(u, q) := (q, div(u))−1,k,0
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Four examples

The pressure equation

Stochastic Soboloev spaces

I

ρ ∈ [−1, 1], k ∈ R

I

Hs(D) = (S)ρ,k,Hs (D)

I

H(div;D) = (S)ρ,k,H(div;D)

I

L2(D) = H0(D)

I

L∞
l (D), ‖g‖l ,∞ :=

∑

α∈I

ess sup
x∈D

(|gα(x)|)(2N)lα.
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Four examples

The pressure equation

The mixed formulation

The mixed variational problem can be written as follows:







Find u ∈ H(div;D), p ∈ L2(D) such that
a(u, v) + b(v , p) = 0, ∀v ∈ H(div;D),
b(u, q) = (−f , q)−1,k,0, ∀q ∈ L2(D)

I Suppose that (u, p) ∈ H(div;D)× L2(D) solves the weak
formulation and let K �(−1) be in L∞

l (D) for some l such that
k ≤ 2l . Then the pressure p is in H1

0(D).
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Four examples

The pressure equation

The continuity properties

I Suppose that K �(−1) is in L∞
l (D) for some l such that

k ≤ 2l . Then the bilinear forms a(·, ·) and b(·, ·) are
continuous and it holds

|a(u, v)| ≤ Ca‖u‖−1,k,div‖v‖−1,k,div,
|b(v , q)| ≤ Cb‖v‖−1,k,div‖q‖−1,k,0

for suitable constants Ca,Cb < ∞.
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Four examples

The pressure equation

The coercivity property

Z = {v ∈ H(div;D) : div(v(x)) = 0 a.e. x ∈ D}.

I Suppose that K �(−1) is in L∞
l (D) for some l such that

k ≤ 2l . Then if the parameter k is small enough, the bilinear
form a(·, ·) is coercive on Z . That is, it holds

a(v , v) ≥ θa‖v‖2−1,k,div (∀v ∈ Z )

for some constant θa > 0 and k small enough.
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Four examples

The pressure equation

The coercivity property

Since E [K�−1(x)] = 1/E [K (x)] it is clear that the bilinear form (g, h) 7→ (E [K�(−1)]g, h)0 is coercive on

(L2(D))d .

(K�(−1)�u, v)−1,k,0 =
∑

γ

∫

D

(
∑

α+β=γ

K
�(−1)
α uβ )vγdx(2N)

kγ

(K�(−1)�u, v)−1,k,0 ≥
∑

γ∈I

(E [K
�(−1)

]uγ , vγ )0(2N)
kγ

−
1

2
2
k/2−l

‖K
�(−1)

‖l,∞(‖u‖
2
−1,k,0 + ‖v‖

2
−1,k,0)

for each u, v ∈ (L2(D))d .
Thus, for a suitable constant θ0 > 0, we have

(K
�(−1)

�u, u) ≥ (θ0 − 2
k/2−l

‖K
�(−1)

‖l,∞)‖u‖
2
−1,k,0 (1)

Choosing the parameter k small enough makes the right-hand side in (1) positive, and since

‖u‖−1,k,0 = ‖u‖−1,k,div for all u ∈ Z , the result follows.
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Four examples

The pressure equation

The Inf-sup condition

I The bilinear form b(·, ·) satisfies the inf-sup condition: There
exists a positive constant θb such that

sup
v∈H(div),v 6=0

b(v , q)

‖v‖−1,k,div
≥ θb‖q‖−1,k,0, (∀q ∈ L2(D))
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Four examples

The pressure equation

Existence and uniqueness

I Suppose given f ∈ L2(D), let K �(−1) be in L∞
l (D) for l such

that k ≤ 2l , and assume that the parameter k is fixed and
small enough. Then the mixed variational formulation has a
unique solution (u, p) ∈ H(div;D)× L2(D). Moreover, the
following estimates holds

‖u‖−1,k,div ≤
1

θb

(

1 +
Ca

θa

)

‖f ‖−1,k,0

‖p‖−1,k,0 ≤ Ca

θ2b

(

1 +
Ca

θa

)

‖f ‖−1,k,0.
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Four examples

The pressure equation

The discrete problem

We construct a sequence {(Xm,Qm) : m ∈ N} of finite
dimensional subspaces of H(div,D)× L2(D), and consider the
discrete problems

Find um ∈ Xm, pm ∈ Qm such that
a(um, v) + b(v , pm) = 0, (∀v ∈ Xm),
b(um, q) = (−f , q)−1,k,0, (∀q ∈ Qm),
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Four examples

The pressure equation

Approximate spaces

I Th is a finite collection of open triangles (or tetrahedra)
{Ti : i = 1, . . . , r} such that Ti ∩ Tj = ∅ if i 6= j .

I For a given domain T ⊂ R
d , and n ∈ N0, we define the spaces

Dn(T ) := (Pn−1(T ))d ⊕ xPn−1(T )

X n
h := {v ∈ H(div;D) : v |T ∈ Dn(T ), T ∈ Th}

Qn−1
h := {v ∈ L2(D) : v |T ∈ Pn−1(T ), T ∈ Th}



Approximation of Stochastic PDEs

Four examples

The pressure equation

Approximate spaces

For N,K ∈ N we define the cutting IN,K ⊂ I by

IN,K := {0} ∪
N
⋃

n=1

K
⋃

k=1

{α ∈ N
k
0 : |α| = n and αk 6= 0}

Next, for each h ∈ (0, 1] and n,N,K ∈ N we define the
finite-dimensional spaces

X n
N,K ,h := {v =

∑

α∈IN,K

vαHα ∈ H(div;D) : vα ∈ X n
h }

Qn−1
N,K ,h := {q =

∑

α∈IN,K

qαHα ∈ L2(D) : qα ∈ Qn−1
h }
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Approximate spaces

I Let m ∈ N denote some ordering of the parameters N,K , r
such that N(m) + K (m) + r (m) ≤ N(m+1) + K (m+1) + r (m+1)

I

Xm := X n
N(m),K (m),h

r(m)
and Qm := Qn−1

N(m),K (m),h
r(m)

I Xm ⊂ H(div;D) and Qm ⊂ L2(D) (m ∈ N)

I div(Xm) = Qm

I vN,K :=
∑

α∈IN,K

vαHα, vm = vN
(m),K (m)
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Discrete coercivity and Inf-sup conditions

Zm = {v ∈ Xm : b(v , q) = 0, q ∈ Qm}

Zm ⊂ Z

a(v , v) ≥ ϑa‖v‖2−1,k,div, ∀v ∈ Zm

sup
v∈Xm,v 6=0

(q, div(v))−1,k,0

‖v‖−1,k,div
≥ ϑb‖q‖−1,k,0, ∀q ∈ Qm
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Existence and unicity for the discrete solution

The discrete problem has a unique solution (um, pm) ∈ Xm ×Qm.

Moreover, it holds

‖um‖−1,k,div ≤
1

ϑb

(

1 +
Ca

ϑa

)

‖f ‖−1,k,0

‖pm‖−1,k,0 ≤
Ca

ϑ2
b

(

1 +
Ca

ϑa

)

‖f ‖−1,k,0
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Error estimates

Let (u, p) and (um, pm) be the solutions of the continuous and the
discrete weak problems. If (u, p) ∈ (Hl(D))d ×Hl(D), 1 ≤ l ≤ n,
then it holds

‖u − um‖−1,k,0 ≤ ‖u − uN,K‖−1,k,0 + Chl‖u‖−1,k,l

‖p − pm‖−1,k,0 ≤ ‖p − pN,K‖−1,k,0 + Chl(‖p‖−1,k,l + ‖u‖−1,k,l )

for a suitable positive constant C , independent of N,K , and h.
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Truncation errors

It remains only to estimate the truncation errors

‖u − uN,K‖−1,k,0 and ‖p − pN,K‖−1,k,0.

Let V be any separable Hilbert space, let N,K ∈ N, q ≥ 0 be
given, and assume r > r∗, where r∗ solves

r∗

2r∗(r∗ − 1)
= 1 (r∗ ≈ 1.54).
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Truncation errors

Then for f ∈ (S)−1,−(q+r),V it holds

‖f − f N,K‖−1,−(q+r),V ≤ BN,K‖f ‖−1,−q,V

where

BK ,N =
√

C1(r)K 1−r + C2(r)(
r

2r (r−1))
N+1,

C1(r) =
1

2r (r−1)−r , C2(r) = 2r (r − 1)C1(r)

(Benth, Gjerde, Vage)
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Main results

Let q ≥ 0 and assume r > r∗. Then if (u, p) ∈ (Hl (D))d ×Hl(D),
1 ≤ l ≤ n, and with the parameter k = −(q + r), it holds

‖u − um‖−1,k,0 ≤ BN,K‖u‖−1,−q,0 + Chl‖u‖−1,k,l

‖p − pm‖−1,k,0 ≤ BN,K‖p‖−1,−q,0 + Chl(‖p‖−1,k,l

+‖u‖−1,k,l )

for some positive constant C independent of N,k and h.
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Remarks

I Rate of convergence in the spatial dimension is optimal.

I The approximation of the seepage velocity u has the same
order of accuracy as that of the pressure p.

I Because the rate in the stochastic dimension, is rather low, a
priori, there is little point in using high order elements when
constructing X n

h and Qn−1
h (one could, for example, choose

X 1
h and Q0

h ).

I In those cases where the solution has high stochastic
regularity, the observed stochastic rate seems to be quite fast.
In this case using higher order finite elements may be
appropriate.
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Algorithmic aspects of the approximation

I We study algorithmic aspects of our approximation.

I We show how the approximation can be constructed as a
sequence of deterministic mixed finite element problems, and
indicate a suitable approach for the solution of this sequence.

I We also discuss stochastic simulation of the solution.
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Chaos coefficients

Let v = wHγ and q = gHγ with w ∈ H(div;D), g ∈ L2(D), and
γ ∈ I, then

a(u, v) = ((K �(−1)�u)γ ,w)0(2N)
kγ

=
∑

α+β=γ

(K
�(−1)
β uα,w)0(2N)

kγ

b(u, q) = (q, div(u))−1,k,0 = (g , div(uγ))0(2N)
kγ
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Chaos coefficients

Thus, the chaos coefficients {(um,γ , pm,γ) : γ ∈ IN,K} must solve
the following set of variational problems.
For each γ ∈ IN,K , find um,γ ∈ X n

h and pm,γ ∈ Qn
h , such that:

(1)























a0(um,γ ,w) + b0(pm,γ ,w) = −
∑

α≺γ

aγ−α(um,α,w),

b0(g , um,γ) = (−fγ , g)0,

∀w ∈ X n
h , ∀g ∈ Qn

h



Approximation of Stochastic PDEs

Four examples

The pressure equation

Chaos coefficients

where we have introduced the bilinear operators aβ(·, ·) and b0(·, ·)
defined on H(div;D)× H(div;D) and L2(D)× H(div;D),
respectively, and given by

aβ(v ,w) := (K
�(−1)
β v ,w)0,

b0(v , g) := (g , div(v))0
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Ordering

Remark 1:

We shall assume that the set of multi-indices IN,K is ordered in
such a way that {um,β : β ≺ γ} has been calculated when the γth
equation is considered. This is essential for the practical use,
because such an ordering allows us to solve (1) as a sequence of
problems, each giving one of the chaos coefficients of the
approximation.
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Ordering

Remark 2:

The solution of (1) involves solving (N + K )!/(N!K !)
sub-problems. One problem for each γ ∈ IN,K . Also note that the
γth equation is equivalent to the discrete version of a deterministic
mixed finite element problem over H(div;D)× L2(D).
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The algebraic problem

Let {Ψi : i = 1, . . . ,MX} and {φi : i = 1, . . . ,MQ} denote the
finite element basis functions for X n

h and Qn
h , respectively. Then

for each γ ∈ IN,K and x ∈ D, we may write

um,γ(x) =

MX
∑

i=1

Um,γ,iΨi(x), and

pm,γ(x) =

MQ
∑

k=1

Pm,γ,kφk(x),

for suitable real constants Um,γ,i and Pm,γ,k .
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The algebraic problem

Furthermore, Um,γ := [Um,γ,i ] and Pm,γ := [Pm,γ,k ] satisfy the
algebraic problem

[

A0 BT
0

B0 0

] [

Um,γ

Pm,γ

]

=

[

Gγ

Fγ

]

,

where we have defined

Aβ,ij := aβ(Ψj ,Ψi ), B0,kj := b0(Ψj , φk)

Gγ := −
∑

α≺γ

Aγ−αUm,α, Fγ,k := (−fγ , φk)0

(i , j = 1, . . . ,MX , k = 1, . . . ,MQ , γ, β ∈ IN,K )
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Stochastic simulation of the solution

Once we have calculated the chaos coefficients
{(um,γ , pm,γ) : γ ∈ IN,K}, we may do stochastic simulations of the
solution as follows: First, generate K independent standard
Gaussian variables X (ω) = (Xi (ω)) (i = 1, . . . ,K ) using some
random number generator, and then form the sums

um(x , ω) =
∑

α∈IN,K

um,α(x)Hα(X (ω)),

pm(x , ω) =
∑

α∈IN,K

pm,α(x)Hα(X (ω)), (x ∈ D)

where Hα(X (ω)) :=
∏K

j=1 hαj
(Xj(ω))
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Stochastic simulation of the solution

I The advantage of this approach is that it enables us to
generate random samples easy and fast. For example, in
situations where one is interested in repeated simulations of
the pressure and velocity, one may compute the chaos
coefficients in advance, store them, and produce the
simulations whenever they are needed.
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An algorithm for the solution

(1) Form the ordered set IN,K and let γ = (0, · · · , 0).
(2) Calculate the matrices A0 = [a0(Ψj ,Ψi )] and
B0 = [b0(Ψj , φk)].

(3) While γ ∈ IN,K do,

(3.1) Calculate Fm,γ = [(−fγ , φk)0,D ].

(3.2) Find the set Lγ = {α ∈ IN,K : α ≺ γ}.
(3.3) For each α ∈ Lγ ,

(3.3.1) Calculate the matricesAγ−α = [aγ−α(Ψj ,Ψi )].

(3.3.2) Update the right hand side
Gm,γ := Gm,γ − Aγ−αUm,α.
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An algorithm for the solution

(3.4) Solve (B0A
−1
0 BT

0 )Pm,γ = B0A
−1
0 Gγ − Fγ .

(3.5) Solve A0Um,γ = Gγ − BT
0 Pm,γ .

(4) Find the next multi-index γ and go to Step 3.

(5) Create a sequence of RK independent Gaussian
variables {Xi , i = 1, . . . ,RK}.
(6) For each r = 1, . . . ,R do,

(6.1) Set X (r) := [X(r−1)K+j ] (j = 1, . . . ,K ).

(6.2) Form simulations of the velocity

u
(r)
m (x) =

∑

α∈IN,K
um,α(x)Hα(X

(r))

and the pressure

p
(r)
m (x) =

∑

α∈IN,K
pm,α(x)Hα(X

(r)).
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A numerical example

We consider

I D =]− 5,+5[

I

K (x) := exp�(W (x)) =
∞
∑

n=0

W (x)�n

n!
,

W (x) =
∞
∑

j=1

ηj(x)Hεj
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Numerical results: Case A
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The first two rows of plots show 6 different simulations of the pressure where f = 1 and (N,K ) = (3, 15). The

last row displays the simulated velocities corresponding to the pressures in the middle row. The dotted line is the

averaged solution.
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Numerical results: Case A

100 200 300 400 500 600 700 800
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0

Sup−norms of pressure chaos
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10
−5

10
0

Sup−norms of velocity chaos

The first plot displays ‖pm,α‖∞ as a function of our ordering of IN,K , and the second plot is the corresponding

plot for the velocity. Both plots are for Case A where f = 1 and (N, K ) = (3, 15).
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Numerical results: Case A
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This figure shows some typical chaos coefficients of the pressure for the Case A where f = 1 and (N, K ) = (3, 15).

In particular, counted from left to right, these are the coefficients numbered 1, 13, 59, 201, 274, 387, 431, 611 and

797 in our ordering of IN,K .
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Numerical results: Case B

Case B: Here we assume (N,K ) = (1, 816) and set f = 1. Thus,
the approximated solution uses the same number of chaos
coefficients as in Case A, but with a different set IN,K .
Thus, the approximated solution uses the same number of chaos
coefficients as in Case A, but with a different set IN,K . We can see
from Figure that this leads more irregular behavior of the
approximation, in particular, for the pressure. This behavior is a
result of the shape and size of the chaos coefficients.



Approximation of Stochastic PDEs

Four examples

The pressure equation

Numerical results: Case B
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This is the same type of plot as in Figure (1), now for Case B where f (x) = 1 and (N,K ) = (1, 816).
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Numerical results: Case B
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The first plot shows ‖pm,α‖∞ as a function of our ordering of IN,K and the second plot is the corresponding

plot for the velocity. Both plots are for Case B where f = 1 and (N, K ) = (1, 816).
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Case C

In this case we assume (N,K ) = (1, 816) and set f (x) = 1+W (x)
(x ∈ [−5, 5]), where W (x) denotes singular white noise. Due to
this stochastic forcing, the solution should behave more irregular
than in Case B.
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Numerical results: Case C
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f (x) = 1 + W (x) and (N, K ) = (1, 816).
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Numerical results: Case C
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The first plot displays ‖pm,α‖∞ as a function of α (using our ordering of IN,K ), and the second plot is the

corresponding plot for the velocity. Both plots are for Case C where f (x) = 1 + W (x) and (N, K ) = (1, 816).
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Numerical results: Case C
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The first two lines of plots display the difference (pBα − pCα)(x) for some chaos coefficients of the pressure in Cases

B and C. In particular, counted from left to right, these are the differences for the coefficients numbered 2, 9, 10,

15, 21, and 28 in our ordering of IN,K . The last row shows the corresponding difference in the velocity, for the

coefficients numbered 15, 21, and 28.
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Numerical results: Case C
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The first plot displays the difference ‖pBm,α − pCα‖∞ as a function of α (using our ordering of IN,K ). The

second plot is the corresponding difference for the velocity u.
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SPDE with additive and multiplicative noises











∂u

∂t
−∇ · (κ � ∇u)− ru �W1(t, ω) = f + σW2(t, x , ω) in (0,T )×D

u(t, x , ω) = 0 on [0,T ] × ∂
u(0, x , ω) = g(x , ω) in D × Ω

(2)
We consider the two-dimensional stationary case of (1) with
permeability κ = 1. We will in this example consider two specific
cases: Cases A and B, corresponding to the additive and
multiplicative white noises respectively.
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Case A:

We assume (N,K ) = (3, 3) and set f = 1, r = 0 and σ = 1.
In Figure 1 we show typical simulations for the pressure. We also
plot some of the chaos coefficients and some realizations of the
solution.

Mean and Chaos coefficient 1
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Chaos coefficients 2 and 4
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Linear SPDE with additive and multiplicative noises

Realizations 1 and 8
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Linear SPDE with additive and multiplicative noises

Realizations 12 and 20
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Case B:

We assume (N,K ) = (3, 3) and set f = 1, r = 1 and σ = 0.
In Figure 2, we show typical simulations for the pressure. We also
plot some of the chaos coefficients and some realizations of the
solution.

Mean and Chaos coefficient 1
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Chaos coefficients 2 and 4
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Linear SPDE with additive and multiplicative noises

Realizations 1 and 8
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Linear SPDE with additive and multiplicative noises

Realizations 12 and 20
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Stochastic micro-structured photonic crystal fibers

Photonic crystal fibers (PCF) consist of an array of holes running
through the length of the fibers which serve as cores for light
guiding.
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The governing equation for PCF is the Maxwell equation.
By ssuming time harmonic e−iωt and z dependence e iβz along the
fiber the Maxwell can be reduced to a Helmholtz equation with
unknown complex propagation constant β.

∆E + k2E = 0

• k2 = k20n
2 − β2.

• k0 =
2π
λ

= the wave number.
• n = n(λ) refractive index.
β = effective index.

e iβz = e i(Re(β))ze−Im(β)z

Re(β) gives the propagation constant of the light along the fiber
and Im(β) gives the decay rates.
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Schallow water: the problem

I The problem
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•
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• Algeciras
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•
Sidi Kankouch
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Schallow water: notations

I B = B(x , y , ω) = topography variations
I D = D(t, x , y , ω) = total length of the water column
I φ = φ(t, x , y , ω) = local water elevation from the surface

z=0.φ = B + D.

x

B(x,

(t,x,ω)

ω)
Stochastic bottom

Stochastic free surface

Water flow

D

φ (
t,

x
,ω

)
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Schallow water: equations

∂−→u
∂t

+−→u ∇−→u − ν∆−→u = −f−→u ⊥ − g∇φ

∂φ

∂t
+−→u · ∇φ+ φ∇.−→u = −→u · ∇B + B∇.−→u

I
−→u = −→u (t, x , y , ω) = the velocity field, −→u ⊥ = (−u2, u1).

I f = f (t, x , y , ω) = Coriolis forces

I g = gravitational acceleration

I (t, x , y) ∈ [0,T ] ×D = time-spatial domain

I ω ∈ Ω = set of elementary events
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Uncertain topography

I B(x , y , ω) = B0(x , y) + B̃(x , y , ω)
I B̃(x , y , ω) = exp�(W (x , y , ω))
I W (x , y , ω) = singular white noise
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Uncertain topography
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Uncertain topography
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Chaos coefficients:

I Substituting the Wiener chaos expansions

I

−→u (t, x , y , ω) =
∑

α

−→u α(t, x , y)Hα(ω)

I

φ(t, x , y , ω) =
∑

α

φα(t, x , y)Hα(ω)

I

B(x , y , ω) =
∑

α∗

Bα(x , y)Hα∗(ω), α∗ = (α1j )

I

f (t, x , ω) =
∑

α

fα(x)Hα(ω)
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I we obtain the following recursive system of deterministic
PDE’s:

I If γ = 0, then (−→u 0, φ0) is solution of the shallow water
equations

∂−→u 0

∂t
+−→u 0 · ∇−→u 0 − ν∆−→u 0 = f0

−→u ⊥
0 − g∇φ0

∂φ0

∂t
+−→u 0 · ∇φ0 + φ0∇ · −→u 0 =

−→u 0.∇B0 + B0∇.−→u 0,
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I If γ � 0, then (−→u γ , φγ) is solution of the linearized shallow
water equations

∂−→u γ

∂t
+−→u 0 · ∇−→u γ +

−→u γ · ∇−→u 0 − ν∆−→u γ = −f0
−→u γ

⊥ − g∇φγ

−fγ
−→u 0

⊥ −
∑

α<γ

−→u α · ∇−→u γ−α −
∑

α<γ

fα
−→u ⊥

γ−α

I

∂φγ

∂t
+−→u 0 · ∇φγ + φγ · ∇−→u 0 = −−→u γ · ∇φ0 − φ0 · ∇−→u γ

−
∑

α<γ

−→u γ∇φγ−α −
∑

α<γ

φα∇.−→u γ−α

+
∑

α≤γ

−→u α∇Bγ−α −
∑

α≤γ

Bα∇.−→u γ−α



Approximation of Stochastic PDEs

Four examples

Stochastic schallow water equations

Numerical simulations
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Figure: height deterministic (2d)
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I A particular nice feature of the Wick approach is that the
singular white noise process can be defined as a mathematical
rigorous object.

I SPDEs can be solved as actual PDEs and not only as integral
equations.

I Many multiplicative or non-linear SPDEs are well defined in
their Wick version.

I SPDEs involving additive and multiplicative noise can be
solved numerically.

I We can handle SPDEs involving white noise with dependent
increments.
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Conclusions

I Wick type SPDEs are easy to solve.

I Ability to handle PDE’s with stochastic effects (stochastic
boundary, initial conditions, boundary conditions, forces and
coefficients which satisfy SDE’s, · · · ).

I Can be used as a preconditioner for more general problems.
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THANK YOU
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