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Introduction

Main References

Presentation based on papers:

) SMC Methods for High-Dimensional Inverse Problems:
A case study for the Navier-Stokes equations,
(under revision, SIAM Journal of Uncertainty Quantification).

3) On the Stability of SMC Methods in High Dimensions,
(forthcoming at The Annals of Applied Probability).



Introduction

General Picture

@ This talk is part of a broader collaborative research effort
that aims at developing efficient principled Monte-Carlo
methods for filtering problems in high dimensions.

@ An important area of application is Data Assimilation,
where the state of the art in terms of practical applications
is probably the Ensemble Kalman Filter (Evensen, 09).

@ A concern about Kalman-Filter-type methods is that they
employ rather ad-hoc linearisations, thus their properties
when applied to non-linear systems are yet to be fully
understood.



Introduction

Background

@ Perceived idea in
Data Assimilation (DA) - Sequential Monte-Carlo (SMC)
communities that solving the full Bayesian problem for
practical DA applications using particle filtering is
infeasible.

@ Due to weight degeneracy happening very fast.

@ So, standard practice is to apply Kalman-Filter-type
methods using Gaussian approximations.

@ Yet, there have been new attempts trying to confront
weight degeneracy for SMC from DA community
(e.g. van Leeuwen (10), Chorin et al. (10)).

@ Talk will show some efforts towards this direction from
group from (mainly) SMC community.
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SMC Samplers

SMC Method

@ Objective: Obtain samples from sequence of target
distributions of increasing dimension:

Mi(x1.1), Na(x1:2), .. s Ma(X1:0) 5 - -
Index n can represent time, or be fictitious.
@ The construction involves also some kernel which
increases the dimension, Mn(x1.(n—1), dXn).
@ Method: Exploit sequential structure via:

i) Importance Sampling
i) Resampling

to generate sequence of weighted particles:
N

D WO, st Mn(di.n) ~ > Wy dy (1.n)

:n
i=1



SMC Samplers

Important Example: Particle Filtering

@ Model: Consider State Space Model:
Xn|Xn—1 ~ P(Xn|Xn—1) » YnlXn ~ P(Yn|Xn) -
@ Of interest here is the posterior of the signal:
Mn(X1:n) = P(X1:n[¥1:n)
@ Here, we have that:

Mn(X1.(n-1, dXn) = P(Xn|Xn—1)AXn



SMC Samplers

General SMC Algorithm

@ Del Moral et al. (06).
@ The AIgorithm:
. Initialise x{"} ~ My (xi. 1) with w( = (x(’)) Setn=1.
1. Given (xffz,, 7), get X\, ~ Moy1(x"), dxn41) and assign:

M1 (X1 (n+1))

=W, .
n+1 n
I'I,,(xm) Mpiq (x1( 3,, x,(,'L)

2. Calculate Effective Sample Size:

N /)
ESSy. 1 = (i Waii”

i=1 ( Wr(121 )2

If Bt < o € (0,1) then resample and set W), =

4. Setn=n+1. Returnto Step 1.



SMC Samplers

Static Case

@ Sequence of interest is on fixed dimension:
Mi(x), Nao(x), ... ,Mp(x),...

@ This can be cast into the general SMC framework of
increasing dimension as long as for x1., ~ MNy(x1.,) we
have x, ~ Mp(x,) (Del Moral et al. 06).

@ A standard way for developing the SMC sampler is by
specifying kernels Kj(x, dx’) such that:

I—InKn = I_In
@ MCMC methodology provides several candidates for Kj,.

@ For instance, Random-Walk Metropolis or Independence
Samplers have been used in applications.
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SMC Sampler (a version of it)

@ Neal (01); Chopin (02); Del Moral et al. (06).
@ The Algorithm:
0. Initialise xfi) ~ Iy with weights Wf“ =1.Setn=1.
1. Given (x), Wi, move x(i) ~ Kt (X5, dix).
2. ASS|gn weights W), = WS - Bt (V) to get
(1 Wky) ~ .
3. Calculate Effective Sample Size:

N

ESS _ ( i=1 n‘+1)2
n+1 — (W(/)1)72 .

If 8%t < o € (0, 1) then resample and set Wr(721 =1

4. Set n=n+ 1. Return to Step 1.



SMC Samplers

Adaptive SMC Samplers

@ A critical property of SMC samplers is that they can use
current particle information to tune kernels k, ‘on the fly’.

@ SMC Adaptation (an example):

Assume having (x,g,'), W,S’)) ~ [p, we can estimate:

A_z,wn) $2 Z,1W(’(X fin)?
Hn 21117’ n 211

and correspond K, to a RWM kernel with proposal:

AP 04 N, 52)



SMC Samplers

Adaptation and Consistency

@ Adaptive SMC is widely used in practical applications.

@ Adaptation affects the consistency properties of MC
estimates.

@ We have found (Beskos et al. (14)) that, for many cases of
practical interest:

i) The effect of adaptation in the accuracy of MC estimates is
small O(y;) compared to MC error O( ).

i) Asymptotic variances at the CLT for MC estimates using the
adaptive kernels are the same as using the ‘ideal’ kernel.

@ Estimates of normalising constants are not unbiased any
more, thus adaptation cannot be used yet in recent popular
‘pseudo-marginal’ MCMC methods.



SMC Samplers

General Guidelines

@ Ingredients for a potentially Stable SMC Sampler:

e Successive I, should not be "too different”, so that
incremental weights T2+t (x{”) are stable.

e MCMC move steps should be "uniformly effective" over the
sequence of targets.

@ We have actually quantified these principles in a particular
context (Beskos et al. (14)).



SMC Samplers

Example Static SMC

@ We have i.i.d. target distribution:

d

N(x1.q) = [ (%)

j=1
and will use particles, N, from:

M (X1.0) = {N(x1.4) }*"
for some small ¢ > 0.

@ We would require N = O(x9), x > 1, for direct
Importance Sampling:

X0~y WO = B ) (O, WO



SMC Samplers

Tempering

@ We work with the sequence of distributions:
Ma(x) o {N(x)}*"
for inverse temperatures
P << <Pn<- < gp=1

@ We require sequence of Markov transition kernels to
propagate particles {K, ﬁ:1 such that:

I_ann = I_ln



SMC Samplers

Towards a Stable Algorithm

@ We make the temperature selections:

p=d+1, ¢n—|—1—¢n:17q51

@ We consider the simplified scenario:

Kn(Xn—1,dxn) = n(Xn=1j,AXnj) ; 7nkn = mn

H::]Q



SMC Samplers

Conditions for Stability

(A1) i. Minorisation condition uniformly in ¢:

There exists set C, constant 6 € (0, 1) and probability law v
so that Cis (1,6, v)-small w.r.t. k.

ii. Geometric Ergodicity uniformly in ¢:
ks V(x) < AV(x)+ blg(x),

with A < 1, b > 0 and C as above, for all ¢ € [¢1,1].

(A2) Controlled Perturbations of {k,}:
lky — kyrllv < Mo — | .



SMC Samplers

Statement of One of Results

@ Theorem: Under the conditions, we have that as d — oc:
()
log Wy~ = BJ; Y
where B is a Brownian motion.

@ The asymptotic variance is:

¢
o= (1= 01) [ {8~ ke(GR) } 0.

P1

@ log W1(i) stabilise as d — oo for fixed N.



SMC Samplers

Comments

@ Recall that:

¢
o= (1= 01) [ e~ he(GR) } 0.

P

@ Here, gs is the solution to the Poisson equation:

9(x) — ms(9) = gs(x) — ks(gs)(x)
@ Note also that:
m{ 9% — k(@) }
is the asymptotic variance in the standard CLT for
geometric MCMC Markov chains.



SMC Samplers

Takehome Conclusions

@ Ingredients for a potentially Stable SMC Algorithm:

e Enough bridging steps to stabilise incremental weights.

e MCMC steps uniformly effective over the sequence of
bridging densities.

@ Adaptation will be critical in practical applications.
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Navier Stokes

Navier Stokes Dynamics

@ Consider NS dynamics on [0, L] x [0, L], describing the
evolution of the velocity u = u(x, t) of incompressible fluid:

?;—VAU+(U‘V)U+Vp:f

with v the viscosity, p the pressure, f the forcing.
® A =92 + 0% is the Laplacian operator.

@ We will assume periodic boundary conditions:
ui(0,t) = (L, t)fori=1,2.



Navier Stokes

Spectral Domain

@ Natural basis here is {{k }xcz2/40y Such that:
vk(x) = g exp{i g k- x}
where k- = (—ky, ky)'.
@ So that we can expand:

ux) = > ukvr(x)

kez2/{0}

for Fourier coefficients ux = (u, ).



Navier Stokes

Example Dynamics

@ Stationary regime, 2 videos:

L=2r,v=45, f(x)=Vcos((1,1)"x)

@ (Mildly) Chaotic regime, 2 videos:

L=2r, v=g5, f(x)=Vcos((55)"x)



Navier Stokes

Data Setting

@ Objective: Learn about the initial condition uy of the PDE
given available observations.

@ We observe u(x, t) with error:
Ys,m = U(Xm,S6) + N(0,X)
forindices1 <s<T,1<m<MandJ > 0.
@ We define the observation operator:
Up — Gsm(Up) = u(xm, s9)

@ This setting corresponds to Eulerian observations
(there is also the Lagrangian set-up).
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Prior Specification

@ The parameter to be inferred (initial condition up) is in
theory an infinite-dimensional object.

@ Thus, a lot of care is need in terms of setting a prior, so
that the posterior is well-posed.

@ Following Stuart (10), we select a Gaussian prior:
Mo = N(O, B%(—A)™)
fora> 1,52 > 0.

@ Such a choice allows a simple interpretation for the prior
distribution of the Fourier coefficients:

Re(uk),lm(uk) i'Ld ( 7262( 12 ’k’ ) )



Navier Stokes

Target Distribution

@ We have the likelihood function (Y denotes all data):
L(Y | up) = o3 Lsm|Vs,m—Gs,m(Uo)[§
@ And the target posterior distribution:
M(uo|Y) o< L(Y | to) x Mo(to)
o State space is Hilbert space H = L2([0, L]?,R?).

@ Target is in theory infinite-dimensional; in practice, a
high-dimensional projection will be used.



Navier Stokes

Standard Approaches

@ Kalman-Filter-type methods can give estimates of mean,
uncertainty via linear approximation of PDE dynamics
(Law & Stuart, 12)

@ E.g. Ensemble KF (Evensen, 09).

@ Such methods many times track well the mean but not the
uncertainty.

@ Efforts have recently been made to solve full Bayesian
problem for non-linear dynamics.

@ van Leeuwen (10), Law & Stuart (12)
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Learning from Posterior

@ Law & Stuart (12) propose a RWM-type MCMC algorithm.

@ It proposes:
U =puo+vV1-p2Z

for noise Z ~ [y, accepted will probability:

L(Y|uP"
1A ( Uy )
L(Yuo)
@ This is relevant for off-line setup, and was used to check
robustness of practical approximate algorithms.

@ Algorithm needed p ~ 1 to give good acceptance
probabilities, and could tackle some scenarios (state space
made of 642 positions).
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Example Application: Short-Time

@ We considered the Chaotic Regime (v = ;).

@ Data: M=16, T=5, § =0.02, ¥ = diag{0.2,0.2}.
@ Prior: 2 =5, a=22.

@ Kernel: p=0.9998, E[a]~ 0.30.

@ True up: Sample from prior.

@ Computational Time: 9 days
(dim = 642, dt = 0.002)



Navier Stokes

MCMC Output
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Navier Stokes

Mixing Issue for MCMC

@ The proposal also writes as:
Uy = plok + V1= 2N, § (G |K[P)~)
@ Scale of noise ideally tuned to the prior distribution, but
badly tuned to the posterior.

@ A-posteriori, low Fourier coeffs have much smaller
variances and other means than a-priori, explaining p ~ 1.

@ We would like to go on with as-global-as-possible MCMC
steps, but greatly increase their efficiency.
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SMC Samplers

@ It seems sensible to apply an SMC sampler.

@ We can build a bridging sequence of densities between
prior Iy and posterior M via Sequential Assimilation of data
over observed locations and time instances.

@ Assume data are ordered as y;, for 0 < n < MT.

@ So we have the bridging densities:
Mn=N(t|y1,Y2,---,¥n), 0<n<MT
@ We apply SMC sampler, starting from prior:

u! ~ g, W Wy~



Navier Stokes

Bridging Densities

@ Are incremental weights stable?
@ It turns out that some tempering might be needed.

@ In-between N, and N, 1 we introduce:
Mng =M x (Hnni?)q5
@ Incremental weights are equal to:

Wy, = () () = Wiy

n

@ Adaptive Tempering:
Pick ¢ so that ESS, , ~ N/3, (Jasra et al., 11).



Navier Stokes

MCMC Kernel

@ Are kernels K, effective?

@ Naive choice of Kj,, 1 such that N, 1K1 = NM,.1 would be
to choose proposal:

| o
uDP = pul) VT 2N, S (4 K2 )

@ SMC Adaptation:

Assuming having (u,(,'), W,S')) ~ Iy, we estimate:

Zl 1 n n)k 6'2 _ Zl’i1 Wf(ll)(uﬁll,)k_'ﬁ‘k)2
Y K

i = = :
T 7w

and propose:

U = i+ p (ul) — i) + /T = 2 N(0, 6



Navier Stokes

Example Application: Short Time

Algorithmic Specification:

@ Distinguish between:
e Low Frequencies: |ki| < 7, |kz| < 7, dim; ~ 200.

e High requencies: dimy = 642 — dimy.

@ py = 0.991 for proposal tuned to prior in dimy.
pr = 0.99 for advanced proposal in dim;.

@ Complete kernel synthesized 20 such steps.
@ Used N = 1,020 particles.

@ Computational time: 7.4h (used parallelisation).
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Navier Stokes

SMC Performance: Acceptance Probability
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SMC Performance: Jittering

Re(u, ,) before vs after mcme Im(u, ,) before vs after mcme
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Navier Stokes

SMC Performance: Jittering

@ We use one-dimensional summary:

N o) ()2
N (U —u -R
= 5:,_21( K = f) =1 — corr(u, ux)
2> ey lug” — Uk

as a statistic to monitor amount of jittering for each
frequency k.

@ The closer Ji is to 1, the better.
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SMC Performance: Jittering
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Example Application: Long-Time

@ We considered the Chaotic Regime (v = ).
o Data: M=4, T=20, 6 =02, ¥ =diag{0.2,0.2}.
@ Prior: 2 =1, a=2.

@ Computational Time: SMC 3.5 days, MCMC oc.
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SMC Output: Final Field
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Navier Stokes

SMC Output

@ Video Nofi.
@ Video No2.
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Discussion

Discussion

@ PDE solver run over ~ 10* dimensions in our examples.

@ To move to dimensions great than 10%, some possible
directions could be as follows.

e Upgrade to Online Algorithm:
Described algorithm for NS is of cost O(T?) as at every
calculation of a particle weight, or every MCMC step, PDE
dynamics have to run from time t = 0 to current time.

e Improve Development of MCMC steps.

@ Shown MCMC has subsequently being greatly improved
(Law and collaborators).
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Discussion

@ We have treated the case of deterministic signal.

@ The case of stochastic signal (i.e. signal driven by SPDE)
is also very important for applications (e.g. stochastic
Navier-Stokes model).

@ We are currently working on the development of an
algorithm in this direction, which will be online, and
(hopefully) could be the state-of-the-art for algorithms that
try to tackle the full Bayesian problem for SPDE models.



Discussion

@ Thanks!
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