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Main References

Presentation based on papers:

α) SMC Methods for High-Dimensional Inverse Problems:
A case study for the Navier-Stokes equations,
(under revision, SIAM Journal of Uncertainty Quantification).

β) On the Stability of SMC Methods in High Dimensions,
(forthcoming at The Annals of Applied Probability).
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General Picture

This talk is part of a broader collaborative research effort
that aims at developing efficient principled Monte-Carlo
methods for filtering problems in high dimensions.

An important area of application is Data Assimilation,
where the state of the art in terms of practical applications
is probably the Ensemble Kalman Filter (Evensen, 09).

A concern about Kalman-Filter-type methods is that they
employ rather ad-hoc linearisations, thus their properties
when applied to non-linear systems are yet to be fully
understood.
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Background

Perceived idea in
Data Assimilation (DA) - Sequential Monte-Carlo (SMC)
communities that solving the full Bayesian problem for
practical DA applications using particle filtering is
infeasible.

Due to weight degeneracy happening very fast.

So, standard practice is to apply Kalman-Filter-type
methods using Gaussian approximations.

Yet, there have been new attempts trying to confront
weight degeneracy for SMC from DA community
(e.g. van Leeuwen (10), Chorin et al. (10)).

Talk will show some efforts towards this direction from
group from (mainly) SMC community.
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SMC Method

Objective: Obtain samples from sequence of target
distributions of increasing dimension:

Π1(x1:1) , Π2(x1:2), . . . ,Πn(x1:n) , . . .

Index n can represent time, or be fictitious.

The construction involves also some kernel which
increases the dimension, Mn(x1:(n−1),dxn).

Method: Exploit sequential structure via:

i) Importance Sampling
ii) Resampling

to generate sequence of weighted particles:

{x (i)
1:n,W

(i)
n }Ni=1 s.t . Πn(dx1:n) ≈

N∑
i=1

W i
n δx i

1:n
(dx1:n)
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Important Example: Particle Filtering

Model: Consider State Space Model:

xn|xn−1 ∼ p(xn|xn−1) , yn|xn ∼ p(yn|xn) .

Of interest here is the posterior of the signal:

Πn(x1:n) ≡ p(x1:n|y1:n)

Here, we have that:

Mn(x1:(n−1),dxn) = p(xn|xn−1)dxn
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General SMC Algorithm

Del Moral et al. (06).

The Algorithm:

0. Initialise x (i)
1:1 ∼ M1(x1:1) with W (i)

1 = Π1
M1

(x (i)
1:1). Set n = 1.

1. Given (x (i)
1:n,W

(i)
n ), get x (i)

n+1 ∼ Mn+1(x (i)
1:n,dxn+1) and assign:

W (i)
n+1 = W (i)

n ·
Πn+1(x (i)

1:(n+1))

Πn(x (i)
1:n) Mn+1(x (i)

1:n, x
(i)
n+1)

2. Calculate Effective Sample Size:

ESSn+1 =
(
∑N

i=1 W (i)
n+1)2∑N

i=1(W (i)
n+1)2

If ESSn+1
N < α ∈ (0,1) then resample and set W (i)

n+1 = 1.

4. Set n = n + 1. Return to Step 1.
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Static Case

Sequence of interest is on fixed dimension:

Π1(x) , Π2(x), . . . ,Πn(x) , . . .

This can be cast into the general SMC framework of
increasing dimension as long as for x1:n ∼ Πn(x1:n) we
have xn ∼ Πn(xn) (Del Moral et al. 06).

A standard way for developing the SMC sampler is by
specifying kernels Kn(x ,dx ′) such that:

ΠnKn = Πn

MCMC methodology provides several candidates for Kn.

For instance, Random-Walk Metropolis or Independence
Samplers have been used in applications.
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SMC Sampler (a version of it)

Neal (01); Chopin (02); Del Moral et al. (06).

The Algorithm:

0. Initialise x (i)
1 ∼ Π1 with weights W (i)

1 = 1. Set n = 1.

1. Given (x (i)
n ,W (i)

n ), move x (i)
n+1 ∼ Kn+1(x (i)

n ,dx).

2. Assign weights W (i)
n+1 = W (i)

n · Πn+1
Πn

(x (i)
n ) to get

(x (i)
n+1,W

(i)
n+1) ∼ Πn+1.

3. Calculate Effective Sample Size:

ESSn+1 =
(
∑N

i=1 W (i)
n+1)2∑N

i=1(W (i)
n+1)2

.

If ESSn+1
N < α ∈ (0,1) then resample and set W (i)

n+1 = 1.

4. Set n = n + 1. Return to Step 1.
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Adaptive SMC Samplers

A critical property of SMC samplers is that they can use
current particle information to tune kernels kn ‘on the fly’.

SMC Adaptation (an example):

Assume having (x (i)
n ,W (i)

n ) ∼ Πn, we can estimate:

µ̂n =
∑N

i=1 W (i)
n x (i)

n∑N
i=1 W (i)

n
, Σ̂2

n =
∑N

i=1 W (i)
n (x (i)

n −µ̂n)2∑N
i=1 W (i)

n

and correspond Kn to a RWM kernel with proposal:

x (i), pr
n+1 = x (i)

n + ` · N(0, Σ̂2
n)
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Adaptation and Consistency

Adaptive SMC is widely used in practical applications.

Adaptation affects the consistency properties of MC
estimates.

We have found (Beskos et al. (14)) that, for many cases of
practical interest:

i) The effect of adaptation in the accuracy of MC estimates is
small O( 1

N ) compared to MC error O( 1√
N

).

ii) Asymptotic variances at the CLT for MC estimates using the
adaptive kernels are the same as using the ‘ideal’ kernel.

Estimates of normalising constants are not unbiased any
more, thus adaptation cannot be used yet in recent popular
‘pseudo-marginal’ MCMC methods.
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General Guidelines

Ingredients for a potentially Stable SMC Sampler:

Successive Πn should not be "too different", so that
incremental weights Πn+1

Πn
(x (i)

n ) are stable.

MCMC move steps should be "uniformly effective" over the
sequence of targets.

We have actually quantified these principles in a particular
context (Beskos et al. (14)).



Introduction SMC Samplers Navier Stokes Discussion

Example Static SMC

We have i.i.d. target distribution:

Π(x1:d ) =
d∏

j=1

π(xj)

and will use particles, N, from:

Π1(x1:d ) = {Π(x1:d )}φ1

for some small φ1 > 0.

We would require N = O(κd ), κ > 1, for direct
Importance Sampling:

x (i) ∼ Π1 , W (i) = Π
Π1

(x (i)) , {x (i),W (i)}Ni=1 ∼ Π
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Tempering

We work with the sequence of distributions:

Πn(x) ∝ {Π(x)}φn ,

for inverse temperatures

φ1 < φ2 < · · · < φn < · · · < φp ≡ 1

We require sequence of Markov transition kernels to
propagate particles {Kn}pn=1 such that:

ΠnKn = Πn
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Towards a Stable Algorithm

We make the temperature selections:

p = d + 1 , φn+1 − φn = 1−φ1
d

We consider the simplified scenario:

Kn(xn−1,dxn) =
d∏

j=1

kn(xn−1,j ,dxn,j) ; πnkn = πn
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Conditions for Stability

(A1) i. Minorisation condition uniformly in φ:

There exists set C, constant θ ∈ (0,1) and probability law ν
so that C is (1, θ, ν)-small w.r.t. kφ.

ii. Geometric Ergodicity uniformly in φ:

kφV (x) ≤ λV (x) + b IC(x) ,

with λ < 1, b > 0 and C as above, for all φ ∈ [φ1,1].

(A2) Controlled Perturbations of {kφ}:

||kφ − kφ′ ||V ≤ M |φ− φ′| .
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Statement of One of Results

Theorem: Under the conditions, we have that as d →∞:

log W (i)
φ ⇒ Bσ2

φ1:φ

where B is a Brownian motion.

The asymptotic variance is:

σ2
φ1:φ = (1− φ1)

∫ φ

φ1

πs
{

ĝ2
s − ks(ĝ2

s )
}

ds .

log W (i)
1 stabilise as d →∞ for fixed N.
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Comments

Recall that:

σ2
φ1:φ = (1− φ1)

∫ φ

φ1

πs
{

ĝ2
s − ks(ĝ2

s )
}

ds .

Here, ĝs is the solution to the Poisson equation:

g(x)− πs(g) = ĝs(x)− ks(ĝs)(x)

Note also that:
π
{

ĝ2 − k(ĝ2)
}

is the asymptotic variance in the standard CLT for
geometric MCMC Markov chains.
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Takehome Conclusions

Ingredients for a potentially Stable SMC Algorithm:

Enough bridging steps to stabilise incremental weights.

MCMC steps uniformly effective over the sequence of
bridging densities.

Adaptation will be critical in practical applications.
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Navier Stokes Dynamics

Consider NS dynamics on [0,L]× [0,L], describing the
evolution of the velocity u = u(x , t) of incompressible fluid:

∂u
∂t
− ν∆u + (u · ∇) u +∇p = f

∇ · u = 0 ,
∫

[0,L]2
ui(x)dx = 0 , i = 1,2

u(x ,0) = u0(x)

with ν the viscosity, p the pressure, f the forcing.

∆ = ∂2
x1

+ ∂2
x2

is the Laplacian operator.

We will assume periodic boundary conditions:
ui(0, t) = ui(L, t) for i = 1,2.
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Spectral Domain

Natural basis here is {ψk}k∈Z2/{0} such that:

ψk (x) = k⊥

|k | exp{ i 2π
L k · x}

where k⊥ = (−k2, k1)
′
.

So that we can expand:

u(x) =
∑

k∈Z2/{0}

uk ψk (x)

for Fourier coefficients uk = 〈u, ψk 〉.
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Example Dynamics

Stationary regime, 2 videos:

L = 2π , ν = 1
10 , f (x) = ∇ cos

(
(1,1)⊥ · x

)
(Mildly) Chaotic regime, 2 videos:

L = 2π , ν = 1
50 , f (x) = ∇ cos

(
(5,5)⊥ · x

)
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Data Setting

Objective: Learn about the initial condition u0 of the PDE
given available observations.

We observe u(x , t) with error:

ys,m = u(xm, s δ) + N(0,Σ)

for indices 1 ≤ s ≤ T , 1 ≤ m ≤ M and δ > 0.

We define the observation operator:

u0 7→ Gs,m(u0) = u(xm, s δ)

This setting corresponds to Eulerian observations
(there is also the Lagrangian set-up).
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Prior Specification

The parameter to be inferred (initial condition u0) is in
theory an infinite-dimensional object.

Thus, a lot of care is need in terms of setting a prior, so
that the posterior is well-posed.

Following Stuart (10), we select a Gaussian prior:

Π0 = N(0, β2(−∆)−α)

for α > 1, β2 > 0.

Such a choice allows a simple interpretation for the prior
distribution of the Fourier coefficients:

Re(uk ), Im(uk )
i.i.d .∼ N

(
0, 1

2β
2(4π2

L2 |k |2)−α
)
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Target Distribution

We have the likelihood function (Y denotes all data):

L(Y | u0) = e−
1
2
∑

s,m |ys,m−Gs,m(u0)|2Σ

And the target posterior distribution:

Π(u0|Y ) ∝ L(Y | u0)× Π0(u0)

State space is Hilbert space H = L2([0,L]2,R2).

Target is in theory infinite-dimensional; in practice, a
high-dimensional projection will be used.
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Standard Approaches

Kalman-Filter-type methods can give estimates of mean,
uncertainty via linear approximation of PDE dynamics
(Law & Stuart, 12)

E.g. Ensemble KF (Evensen, 09).

Such methods many times track well the mean but not the
uncertainty.

Efforts have recently been made to solve full Bayesian
problem for non-linear dynamics.

van Leeuwen (10), Law & Stuart (12)
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Learning from Posterior

Law & Stuart (12) propose a RWM-type MCMC algorithm.

It proposes:
upr

0 = ρu0 +
√

1− ρ2 Z

for noise Z ∼ Π0, accepted will probability:

1 ∧
L(Y |upr

0 )

L(Y |u0)

This is relevant for off-line setup, and was used to check
robustness of practical approximate algorithms.

Algorithm needed ρ ≈ 1 to give good acceptance
probabilities, and could tackle some scenarios (state space
made of 642 positions).
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Example Application: Short-Time

We considered the Chaotic Regime (ν = 1
50 ).

Data: M = 16, T = 5, δ = 0.02, Σ = diag{0.2,0.2}.

Prior: β2 = 5, α = 2.2.

Kernel: ρ = 0.9998, E [ a ] ≈ 0.30.

True u0: Sample from prior.

Computational Time: 9 days
(dim = 642, dt = 0.002)
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MCMC Output
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MCMC Output
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Mixing Issue for MCMC

The proposal also writes as:

upr
0,k = ρu0,k +

√
1− ρ2 N(0, 1

2 (4π2

L2 |k |2)−α)

Scale of noise ideally tuned to the prior distribution, but
badly tuned to the posterior.

A-posteriori, low Fourier coeffs have much smaller
variances and other means than a-priori, explaining ρ ≈ 1.

We would like to go on with as-global-as-possible MCMC
steps, but greatly increase their efficiency.
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SMC Samplers

It seems sensible to apply an SMC sampler.

We can build a bridging sequence of densities between
prior Π0 and posterior Π via Sequential Assimilation of data
over observed locations and time instances.

Assume data are ordered as yn, for 0 ≤ n ≤ MT .

So we have the bridging densities:

Πn = Π( u0 | y1, y2, . . . , yn ) , 0 ≤ n ≤ MT

We apply SMC sampler, starting from prior:

u(i)
0 ∼ Π0 , . . . , (u(i)

n ,W (i)
n ) ∼ Πn , . . .
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Bridging Densities

Are incremental weights stable?

It turns out that some tempering might be needed.

In-between Πn and Πn+1 we introduce:

Πn,φ = Πn ×
(Πn+1

Πn

)φ
Incremental weights are equal to:

W (i)
n,φ =

(Πn+1
Πn

)φ
(u(i)

n ) = (W (i)
n )φ

Adaptive Tempering:

Pick φ so that ESSn,φ ≈ N/3, (Jasra et al., 11).
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MCMC Kernel

Are kernels Kn effective?

Naive choice of Kn+1 such that Πn+1Kn+1 = Πn+1 would be
to choose proposal:

u(i),pr
n+1,k = ρu(i)

n+1,k +
√

1− ρ2 N(0, 1
2 (4π2

L2 |k |2)−α)

SMC Adaptation:

Assuming having (u(i)
n ,W (i)

n ) ∼ Πn, we estimate:

µ̂k =
∑N

i=1 W (i)
n u(i)

n,k∑N
i=1 W (i)

n
, σ̂2

κ =
∑N

i=1 W (i)
n (u(i)

n,k−µ̂k )2∑N
i=1 W (i)

n

and propose:

u(i), pr
n+1,k = µ̂k + ρ ( u(i)

n,k − µ̂k ) +
√

1− ρ2 N(0, σ̂2
k )
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Example Application: Short Time

Algorithmic Specification:

Distinguish between:

Low Frequencies: |k1| ≤ 7, |k2| ≤ 7, dimL ≈ 200.

High requencies: dimH = 642 − dimL.

ρH = 0.991 for proposal tuned to prior in dimH .
ρL = 0.99 for advanced proposal in dimL.

Complete kernel synthesized 20 such steps.

Used N = 1,020 particles.

Computational time: 7.4h (used parallelisation).
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SMC Output
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SMC Performance: Acceptance Probability
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SMC Performance: Jittering
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SMC Performance: Jittering

We use one-dimensional summary:

Jk =

∑N
i=1(u′(i)

k − u(i)
k )2

2
∑N

i=1 |u
(i)
k − uk |2

= 1− ̂corr(u′k ,uk )

as a statistic to monitor amount of jittering for each
frequency k .

The closer Jk is to 1, the better.
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SMC Performance: Jittering
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Example Application: Long-Time

We considered the Chaotic Regime (ν = 1
50 ).

Data: M = 4, T = 20, δ = 0.2, Σ = diag{0.2,0.2}.

Prior: β2 = 1, α = 2.

Computational Time: SMC 3.5 days, MCMC∞.
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SMC Output: Initial Field
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SMC Output: Final Field
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SMC Output

Video No1.
Video No2.
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SMC Output: Prior vs Posterior
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Discussion

PDE solver run over ≈ 104 dimensions in our examples.

To move to dimensions great than 104, some possible
directions could be as follows.

Upgrade to Online Algorithm:
Described algorithm for NS is of cost O(T 2) as at every
calculation of a particle weight, or every MCMC step, PDE
dynamics have to run from time t = 0 to current time.

Improve Development of MCMC steps.

Shown MCMC has subsequently being greatly improved
(Law and collaborators).
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Discussion

We have treated the case of deterministic signal.

The case of stochastic signal (i.e. signal driven by SPDE)
is also very important for applications (e.g. stochastic
Navier-Stokes model).

We are currently working on the development of an
algorithm in this direction, which will be online, and
(hopefully) could be the state-of-the-art for algorithms that
try to tackle the full Bayesian problem for SPDE models.
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Thanks!
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