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e What is a “computer simulation” ?

= |tis an attempt to model a real-life or

hypothetical problem on a computer so that its
solution can be estimated

e Why do engineers need or prefer computer
simulations ?

= Expensive and/or impossible experiments

= Repetitive processes, typical in design transistors
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fra m eWO r kS Dual-Core Intel® Itanium® 2 Processor
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= CEM is the solution 0o

1,000
1970 1975 1980 1985 1990 1995 2000 2005 2010



Computational Electromagnetics (CEM) mpmmemys ©

Engineering
Applled. Computer Hardware/
Mathematics Software
Models,
approximations, error
Novel and robust analysis Computational resources, new and

specially designed architectures,
parallelization strategies,
programming languages

; Multi-physics modeling and

o . simulation frameworks: Coupled
Appllcatlo_ns n- S|mu|at|on Tools for Solving P b

formulations, fast
algorithms

electromagnetlcs/optlcs/ Maxwell Equations problems of structural, thermal,

photonics and electromagnetic
applications
e Two Domains: * Two types of Methods:
= Frequency Domain Solvers = Differential Equation Based Solvers

= Time Domain Solvers = Integral Equation Based Solvers
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Frequency Domain Simulators e € KAUST

o * Positives
= |ntuitively easier to understand
= Easier to implement in general

Time-derivative: i — j = Lower computational cost
ot = Dispersion is easier to model

Time-dependence: ¢

1
Time-integration: Ja’t ——
’ jw * Negatives
= Strong nonlinearities cannot be modeled

= Only single frequency results, no
broadband data

= Many simulations to obtain broadband
results

= Needs inverse Fourier transform as post-
processors

Convolution — Multiplication

Inverse Fourier Transform to
switch to time domain

Example Commercial Tools:
HFSS (FEM), Comsol (FEM),
FISC (MOM), WIPL-D (MOM)
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Time-dependence: Arbitrary * Posilives _ N
(band limited) = Strong nonlinearities can be modeled
= Provides broadband data with a single

simulation

Fourier Transform to switch to = Transient response is easy to get

frequency domain = Provides immediately the physics, no post-
processing

Example Commercial Tools: . Negatives

Many available (FDTD), No = More difficult to implement

well-known commercial tools = Instabilities

(TD-FEM, MOT-TDIE) = Methods to handle resonance

= Modeling dispersion requires computation
of (costly) temporal convolutions
= Higher computational cost
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Discretize differential form of Maxwell equations

Time-dependent: _ T _ _ _
* Approximate derivatives using neighboring

VXE(r,t)=—U JoH(r,7) elements (in time and space)
ot * Positives
VxH(r,t)=¢ JE(r, 7) +J(r,0) = Straightforward to implement
« Extension to inhomogeneous media is trivial
V.E(r,f) = pr,1) * Negatives
£ = Numerical dispersion
V-H(r,t))=0 = Truncation of the (open) computation domain

= Discretization of the computation domain

Time-harmonic: — — jw . Typlfzally. time .step size is constrained by the
ot spatial discretization

= |naccurate geometry representation (FDTD)

Example Commercial Tools:
HFSS (FEM), Comsol (FEM),
Many available (FDTD)
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S
Boundary Equation:
JE™(r,t) =09E“(rt) res

Time-harmonic: gﬁja)
4

Example Commercial Tools:
FISC (MOM), WPIL-D (MOM),
Not available in time domain

D

Integral Equation Based Simulators wpanmens O Zyp kAyST

* Replace scatterers with equivalent surface and
volume currents
* Find fields due to these currents using Green
function
* Apply boundary conditions to solve for unknowns
Positives
No phase dispersion
No grid truncation (exact radiation condition)
Time step size is not necessarily constrained
by spatial discretization
Only the surface (or volume) of the object is
discretized
= Accurate representation of the geometry
* Negatives
= More difficult to implement
= Higher computational costs
= |nstabilities



Computational Electromagnetics (CEM)

* Applications in electromagnetics/optics/
photonics:

= Radiation, radar, sensing, detection, imaging
= EMC/EMI analysis

= Plasmonics

= THz wave propagation

* As a part of multi-physics modeling and
simulation frameworks (coupled problems of
structural, thermal, and electromagnetic
applications)

= Composite antenna design

= Chip design and packaging

= Vehicle (space craft, UAVs, airplanes, cars)
design
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Some of the challenges in application of CEM
tools in real life scenarios

* Large computation domains (large number of
unknowns)

* Multi-scale geometric features (large number of
unknowns, poor conditioning, slow convergence
rates)

¢ One mesh for multi-physics simulation (multi-scale
elements with high aspect ratios, large number of
unknowns, poor conditioning)

 Difficult to model highly oscillatory physical
resonances in electrically large models

* Presence of spurious modes/resonances on complex

\\\\\W////\\\\W////

structures .\

* Uncertainties in model descriptions including /<<<()>>> <<<())>>;
geometry and excitation parameters, material /////l\\\\\\////l\\\\\\

properties, constitutive relations
* Loss of accuracy due to increasing complexity
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CEM research group at KAUST develops novel time domain solvers for characterizing electromagnetic
wave interactions on electrically large and multi-scale structures and applies them in real-life
problems of electromagnetics/optics/photonics. More specifically:

*  Explicit and non-uniform, yet stable, time marching techniques for
efficiently solving TDIEs (to address the increase in computation time due
to matrix inversion and large number of unknowns)

*  Mixed space and time discretization schemes for TDIEs (for increased
accuracy)

* Exact boundary conditions in the form of TDIEs for terminating differential
equation solvers (for increased accuracy)

*  Blocked FFT-based schemes for accelerating the computation of space-
time convolutions in TDIEs (to address the increase in computation time
due to large number of unknowns)

* Calderon- and Wavelet-based preconditioners for TDIEs (to address the ill-
conditioning due to multi-scale discretizations and low-frequency
excitation)

*  Hybridization schemes between different-scale solvers in time domain
[circuit, transmission line, and TDIE solvers] (to address the ill-conditioning

|
|
i
due to multi-scale discretizations) {
}
|

T mﬁ'
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® Application of the resulting novel methods in

" |nverse scattering problems with sparsity constraints

= Design of plasmonic devices with applications in slow light

and metamaterials
® Uncertainty Quantification (UQ) frameworks for EMC/EMI

characterization on complex electrically large platforms

= Statistical characterization of wave propagation in harsh
environments
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Facilities

Work Force Computational Resources

PhD Students

Post-Doctoral Researchers

Shaheen

= |BM'’s 16-Rack Blue Gene/P, ~65k computing
cores, 222 teraflops/sec

Muhammad Amin
Abdulla Desmal
Ismail Uysal
Sadeed Sayed
Noha Alharthi

Ali Imran Sandhu

= Expandable to petascale computing

= Supported by IBM and KAUST Supercomputing
Laboratory (KSL)

Noor

Ozum Asirim
= Beowulf class heterogeneous cluster

Alumni

Kostyantyn Sirenko, PhD = |ntel Xeon X5570, IBM Power6, ~1000 cores

Arda Ulku, PhD = Supported by KAUST Research Computing

Yifei Shi, PhD
Mohamed Farhat, PhD

Mohamed Salem, PhD (Mar. 2013)
Ahmed Al-Jarro, PhD (Nov. 2012)
Meilin Liu, PhD (Jan. 2012)

Umair Khalid (MS degree, Dec. 2010)
Muhammad Furqgan (Feb. 2012)

Abdul Haseeb Muhammed (Apr. 2011)

CEML: http://maxwell.kaust.edu.sa
KAUST Supercomputing Laboratory: http://www.hpc.kaust.edu.sa
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* Time Domain Discontinuous Galerkin Method with Exact Boundary Conditions
= Introduction
= Formulation
= Numerical Results
= Conclusions and Future/Ongoing Work

= With: Ozum Asirim, Ping Li, Konstyantyn Sirenko, and Yifei Shi
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* Abstract description of structures of interest
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* Time Domain Discontinuous Galerkin Finite Element Methods (TD-DG-FEM)
are an alternative to finite difference time domain (FDTD) and classical FEM
schemes

Advantages

"= |nformation exchange between elements using numerical flux
= All spatial operations are localized
=  Complex/arbitrarily shaped geometries
= Non-conformal discretization
= Adaptive spatial meshing is easier to implement
" Higher order expansions are easy to implement
= (Block) diagonal mass matrix
» Compact solvers when combined with explicit time integration schemes
= Easier to parallelize

Disadvantages

"  |ncreased number of unknowns

» Disadvantage diminishes as expansion order increases
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* TD-DG-FEM is naturally a (spatially) high-order accuracy method
* Accuracy is often limited by

®= Computation domain truncation (PML or approximate absorbing
boundary conditions) in unbounded space problems

» Increase thickness of PML at the cost of efficiency

Proposed Solutions

* Exact absorbing boundary conditions with FFT acceleration
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* Electric field intensity E(r,7) and magnetic field intensity H(r,?) are
governed by the first-order Maxwell curl equations:

............ :\

(), E(r,) =V x H(r,) =0 Q L1
.u(l')atH(r,t)+V><E(r,t):() Z((?)

* Polynomial expansion:

E(r,)=. " [EK(t)l_ £ (r)
H(r,)= " [HK(t)l 0 (r)

* Galerkin testing:

Element K
e¥ 9 EX()=D" xH" (1) +(M"*)'L*F; (¢)
u o H*(1)=-D" XE" (1) (M*)"'L*F}, (¢)

J. S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods, Springer, 2008
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e¥d EX(1)=D* xH" (1) + (M*)'L*F; (1)
ut o H* (1)=-D" xE* ()— (M")'L*F;, (¢)
where

e Field samples to be computed: [EX(1)], = EX (), HE ()], = H @), velx,y,z}
e Differentiation matrices: [D,], =9,/ (), ve {x,y,Z}
®* Mass matrices: [MK]Z.]. = jKEi(r)fj(r)dr

e Face/lift matrices: [L“], = _[aKﬁi(r)ﬁj(r)dr, jetljir, €0k}

J. S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods, Springer, 2008
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e¥d EX(1)=D* xH" (1) + (M*)'L*F; (1)
u® o HY (1) =-D* XE* (/)= (M*)'L*F/ (1)

e Up-winding numerical flux for Maxwell equations:

Ax(Z*AH" —fix AE®)

FY ()=

=) 7+ 7

K _ﬁ><(Y+AEK+ﬁ><AHK) :
FH (t)— Y 4V K'’s neighbor

e Here, Z* =1/Y"=(u" /"), AE* =E**(t)-E* (), AH* =H*" (t)-H* (¢)

J. S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods, Springer, 2008
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*  Numerical flux

Information exchange between elements

Stability of the whole numerical scheme
= |mpose PEC boundary conditions
Z"=7,Y"'=Y AH* =0, AE* = 2E* (¢

= |mpose periodic boundary conditions: “neighboring” elements are on
the opposite sides of computation domain, but connected via numerical
flux

= |mpose exact absorbing boundary conditions (EACs)—described next...
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In A and B each
Iof field comp.,

U, satisfies

wave equation

0’U = AU
UelE.E.E.H H_.H |
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Formulation: EACs REe T o

\ Virtual

1
4 boundaries L

B |

In A and B each B Separation of variables in

Iof field comp., 0 A and B represents U as
U, satisfies multlpllcatlpn of known
wave equation eigenfunctions v,, , and

unknown amplitudes u,, ,

Ulg.t)= Y, u, (z.t), (x,9)
m,n=—oo
atzum n(Z’t) = aium n(Z,t)—V; num n(Zat)

Z/lm,n (Z’O) = al‘um,n (Z9t)

=0
=0



Formulation: EACs REe T o

S~—__ Virtual

1
l boundaries L

B I

In A and B each Separation of variables in

A and B represents U as Cosine Fourier transform

multiplication of known . ) TESPIEEE 0. 8 TPl

. . to the problem for
eigenfunctions v, and :
il amplitudes u

mn

Iof field comp., I
U, satisfies
wave equation

m,n

unknown amplitudes u



Formulation: EACs REe T o

S~—__ Virtual

1
l boundaries L

B I

In A and B each Separation of variables in
A and B represents U as
multiplication of known

eigenfunctions v, and .
9 il amplitudes u

mn

Cosine Fourier transform Solution of the
. with respect to z is applied l resulting
to the problem for generalized
Cauchy problem

Iof field comp., I
U, satisfies
wave equation

m,n

unknown amplitudes u



Formulation: EACs REe T o

S~—__ Virtual

1
l boundaries L

B I

In A and B each Separation of variables in
A and B represents U as
multiplication of known

eigenfunctions v, and .
9 il amplitudes u

mn

Cosine Fourier transform Solution of the Inverse Fourier
. with respect to z is applied l resulting . transform is
to the problem for generalized applied to the
Cauchy problem solution

Iof field comp., I
U, satisfies
wave equation

m,n

unknown amplitudes u

du, (L,0)xd u, (L,1)=

I TG

m,n

0

u (L,t)dt
r—1 ’



Formulation: EACs REe T o

S~—__ Virtual

1
4 boundaries L

B I

In A and B each Separation of variables in
A and B represents U as
multiplication of known
eigenfunctions v, and

L T amplitudes u
unknown amplitudes u P

Cosine Fourier transform Solution of the Inverse Fourier
. with respect to z is applied l resulting . transform is
to the problem for generalized applied to the
Cauchy problem solution

Iof field comp., I
U, satisfies

m,n
mn

J,U(L,t)=%0 U(L,1)— i J‘Jl([t_ﬂc]xm,n)

m,pn=—oo 0

[ Juw.oyv, ndS]dT AoV
t—1 ; : o

e Relates the boundary values with their normal derivative on the virtual boundaries L,
and thus could be used as a boundary condition
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QU=+ UL~ Y { | Jl([t_rp“’"’”)[ | U(L,T)v;,ndS}d’t}Km,nvm,n
L

0 r—7

m,n=—oo

e Convenient for TD-DG-FEM framework

® EACs should be discretized with the same level of accuracy as TD-DG-FEM both in
space and time

* The summations over m and n are truncated to a finite number of terms, M, and N,

* Field component, U, and eigenfunctions, v are sampled at TD-DG-FEM’s nodal

mmn’

points on the virtual boundaries, LL

e Proper (high-order) numerical quadrature rules are used for space and time
integrations
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QU=+ UL~ Y { | Jl([t_rp“’"’”)[ | U(L,T)v;,ndS}d’t}Km,nvm,n
L

0 r—7

m,n=—oo

* The derivative d_is approximated from samples of U on the virtual boundaries, L,

and TD-DG-FEM samples of field components in the vicinity of L (within element K)
using element’s differentiation matrix D" .

e Values of EM field’s components provided by EAC are used as external, ‘+’, values in

the numerical fluxX’'s AE*and AH” on the virtual boundaries L

fAx(Z'AH" —fix AE")

@ Element K values (-) FX(1) =
E + -
EAC values (+) 0 A(B) . é K+ ZA K
FX (1) = nx(Y'AE" +ax AH")
ElementK  / @77 " e Y +Y"

AE* =E**(£)-E"* (¢)
AH* =H*"(t)-H" (¢
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e Maxwell equations and EAC are integrated in time simultaneously

40 X (1) = D X HF (1) + (M¥ ) 'L FE (1) Vaxwel
;UK alHK (t) _ _DXxEX (t) _ (MK )—1LKF]§< (t) equations
J|U" (1) =xDIU* (1)
J - . , EAC
-3 S A [l W, ar
m=—M, n=—N, 0 [—t ’

V
e Computational cost: O(N°N,") mmmp O(N’N, log’ N,)

Blocked FFTs exact, no additional numerical error

® Time Integration: Fourth order explicit Runge-Kutta method



Numerical Results: Accuracy of EACs T (e

e Duration of simulation is 7.5

* Excitation signal

E™(x,1.5,2,t)= 2¢ 9 "B cos (15[t~ 1.5]) 1y, (x,2)

S 10"

g a=0.42,b=0.28
E l::============t=============’.‘==============; — — —

.(7) 10'2t‘.l::::fiif::IIIIIflfIii!‘,3::13:ZIZZI’.‘ZZIIZZZIZZZZZ‘,ZZZIZZZZZZZZI:IZZIZZZZ’.‘ZZZZZIIZIZZZIZZZZIZZIIZ‘,ZZIZZZIZZZZZ‘! lX - lz - 0.5’ h_ 0.5
S

_8 -=- ABC, normal --- ABC, oblique

:q:J —— EAC, normal —— EAC, oblique .

o 103 wx PMLd =0.25, norm. PML d = 0.25, obl. |

= —x=- PMLd = 0.5, norm. -~ — PMLd = 0.5, obl. -

‘.C-U' i ._‘_._._‘_._._._._,_.._._._._._._._._‘_._._.—A—v;

| -

o)

=

104

c

ie)

3 .

c DG-FEM polynomial order

210° ‘ '

= 2 3 4 5




Numerical Results: Mushroom Gratings gt i €

e Height of the structure is 4.1 um; diameter of PEC inclusions is 0.4 um

e 80150 mesh elements in the computation domain. 4 809 000 unknowns
” Im’q S o Toben ool U ppears youmay i

image may have
p d x still appears, you may have to delete the

r comp

er, ans

e Excitation:
e Wavelength at the center frequency is 483 nm
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Conclusions and Future/Ongoing Work oy vt st (ff

Highlights:

Discretization and coupling of EAC equations into TD-DG-FEM discretizing
Maxwell equation are described
Numerical results demonstrate the accuracy of EAC discretization

The accuracy of EAC discretization grows with the order of DG-FEM. Thus,
truncation of computation domain no longer limits the overall accuracy of

numerical solution

Ongoing Work:

Efficient truncation methods for concave geometries
Incorporation of material nonlinearity
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« Time Domain Integral Equation Solver for High Contrast Scatterers
= Introduction
= Formulation
= Numerical Results
= Conclusions and Future/Ongoing Work

= With: Sadeed Bin Sayed and Huseyin Arda Ulku
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* Time Domain Volume Integral Equation (TDVIE) Solvers are an alternative to
finite difference time domain (FDTD) and classical FEM schemes

* TDVIEs are classically solved using Marching-on-in-time (MOT) schemes
Advantages

= No phase dispersion

= No grid truncation (exact radiation condition)

= Time step size is not necessarily constrained by spatial discretization
= Only volume of the object is discretized

= Accurate representation of the geometry
Disadvantages

= Higher computational cost
» Addressed by PWTD and FFT based acceleration engines
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* Instability of the MOT solution
= Still a problem especially for high contrast scatterers
Proposed Solutions

* Band limited interpolation with short duration
* Extrapolation scheme defined on the complex frequency plane
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* Scattered field in terms of potentials

EinC(r,t) \7 B
\ = (r.1) = f 4,0(r1=R/c)

47 R
J(l‘, t) Dielectric t—R/c, V. J(l", f') ,
Object —VJ- I d
|4 dme R
* Equivalent current in terms of electric
flux density
* Volumetric scatter with £(r) and K, J(l‘,t) = K(l’) atD(l‘,t)

residing in free space with € and U
& P o AN o k(r)=1-¢,/e(r)

* Total volume: J/ _ o .

»  Excitation: E™ (r,¢) band-limited to f Electric flux density in terms of electric

max field intensit
* Currentinducedin V': J(r,?) S I
E(r,t)=£(r)D(r,?)



Formulation: TDVIE

E™(r,?) \7

J(r,t)

Dielectric
Object

V

Volumetric scatter with £(r) and K,

residing in free space with €, and K,

Total volume:
Excitation: E™(r,?) band-limited to f
Current induced in V': J(r,?)

A—
(>
King Abdullah University of \
Sci

cience and Technology

KAUST

* Fields satisfy
d E(r,t) =0 E(r,t)—d E*(r,?)

* Inserting everything above and
enforcing the resulting equationat r € V/
yields the TDIVE in D(r,?)

0 E™(r,t)=0,D(r,t)/&(r)
’ 2 .
+I UK ()0, D(r,t—R/c,) v
4 4R
_VJ- V. [K(r’)D(r’,t — R/ co):l v
4 4me R




Formulation: MOT Solution ing Aol Universtyof GZ)p kaust

* To numerically solve the TDVIE

* Volume }Vis divided into tetrahedrons
« D(r,?) is expanded as

D(r,1) = 22 e T (OF, (1)

kK'=11"=0
* Unknowns: Ik,l,

e Temporal basis functions: 7, (¢)
* Spatial basis functions: f,(r)

-

t—L (r—r)), reV;
+ k7?2 k
f.(r)y=q 3V

0 , elsewhere
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* Lagrange interpolation function (LIF)

12

* Wide spectrum (possible source of
instability) 1.0 —LF
< —— APSWF
* Discontinuous derivatives (possible PRCLE
source of instability) 2 o064
* Approximate prolate spheroidal e
wave functions (APSWF) § |
=)
* Band-limited and short temporal é -
support .
* Have continuous derivatives 4
'04 T T T T T T T T T
* Non-causal 5 4 3 2 4 0 1 2 3 4 5

* Non-causality is fixed by temporal Time Steps - At
extrapolation !

* Future values are predicted from past
values



Formulation: MOT Solution cry i ety (f«

* Testing with f (r) at times /At yields

-1 I+NT. I |
Non-casua
ZOIZ - Vz o ZZI—I'II’ T Z Zz—z'Iz' terms
/=1 '=I+1

1
Ly iy = J.g r

v, Ck

£ (1) (0T, (1A dr + H < £, (1), (O, (0,8 T, (1))

t=IAt

1 <V £ (r),V- [Kk,(r)fk'(r)]’]—;'(t)>t=lm

dre,

* How is this solved ?

Solve for 1 ZOII = Vl - Z_112 + Z_ZI3 ZoI1 = V1
Solvefor I, ZI1 =V,-Z1 -7 1.-7 ], Z1 =V, -711
Solvefor I, 71 =V,-Z1,-Z1 -Z 1,-7Z 1. Z1,=V,-Z]1,-Z]

Extrapolation
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* Harmonic Based Extrapolation (HEBE)

= Assumes that the solution can be expanded in
terms of sine and cosine functions within the
band of the excitation

= Expansion coefficients (amplitude of harmonics) 1ot l

X Frequencies

are found using known past samples

S5e+8

® Expansion is used to predict the future samples
(extrapolation)

Im{s}

* Known to work well and produce stable results
for weak scatterers

-5e+8 +

* Unstable for strong scatters

* Strong scatterers support modes with decaying teve

. . -le+9 -5c=.l+8 0 5el+8 1e+9
and oscillating components Refs}

* Frequency sampling cannot be accurately done
on the imaginary axis (i.e., sine/cosine
approximation is not accurate)
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Formulation: Decaying and Oscillatory Modes

KAUST

e Resonance modes of unit sphere

TE mode TM mode

J o (Bp) _ H2(Bp ! Je)) n__Jon(Bp) _ne, ﬁH“LZ(ﬁp/( )
Jon(Bp) HO.(Bp/ e, B J.n(Bp) Bo N HE,(Bpl )

0 o A
6et+8 6e+8 6e+8
% 0 X 0 X X
4e+8 4e+8 - 4e+8
®
X ® 0 ® 0 ®
2e+8 4 2e+8 - 2e+8
w ) w
——~ - -~
E0 1% ® g0 1% ® ® X g0 1% ©
-2e+8 -2e+8 ~2e+8 1
% B (0] % 0 X
O  TEModes O  TE Modes ® Q O  TEModes
4811 & TMModes 4811 & TMModes 4891 & TMModes
x  CEBE x  CEBE o x  CEBE
-6e+8 1 Opax -6e+8 - O -6e+8 1 L “:
T T T o| T T T T T ol T T T T v
-1e+9  -8e+8 -6e+8  -4e+8  -2e+8 0 1e+9 -8e+8 -6e+8 -de+8  -2e+8 0 -le+9  -8e+8  -Be+8 -4e+8  -2e+8 0
Re{s} Re{s} Re{s}
E . 3 gr =6 E = 12
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Formulation: Temporal Extrapolation s € KAUST

*  Frequency sampling should be done on the complex frequency plane
* How to define a temporal extrapolation ?

* Extrapolation coefficients:

olt;)= Z?ﬂ{p}z(/’(f jo+i)

* Solution is expanded in terms
of exponentials :

Nv
()~ Y e

v=1

A, : complex numbers (v=1...NV )
O, weighting coefficients

* Matrix relation: App=b
{A 3}, =€ v=L1...N,;

v

[=1,....k
(b}, = M
* Suppose that A, are known!
* Solution is found by minimum norm
least square solution

'A. Glaser and V. Rokhlin, “A new class of highly accurate solvers for ordinary differential equations,” J. of
Sci. Comput., 38(3), pp. 368-399, March, 2009.
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Formulation: Temporal Extrapolation iy € KAUST

* How to find /1v

Im{A} Im{A}}

At

maximum modulus RRQR . i s
principle {A}ji—e J 9.]_19"'9N7

minimum norm least =1,...,M
square solution

'A. Glaser and V. Rokhlin, “A new class of highly accurate solvers for ordinary differential equations,” J. of
Sci. Comput., 38(3), pp. 368-399, March, 2009.



Numerical Examples: Accuracy of Extrapolation wnans s O 2 auST

4e+8

* Signal: Convolution of 7(t) =exp(—¥¢)cos(27Gt)
with G(¢) = cos(2x ft)exp[—t* / (20°)] -
* r(t) resonance mode of unit sphere with £ =12
fo=34MHz,f, =17 MHz,c=3/(2nf, )
¥ =11.53 Np/ns, ¢ =41.20 MHz R v

mmax

Im{s}

T 1 T T
-4e+8 -3e+8 -2e+8 -1e+8 0
Re{s}

3e9

T
|
869 4~ —— A TN —{— ——————————

1e-9

Amplitude
o

e+ t——F""R————————
— Original Signal
@ Past Samples

| |
| |
2e91 — | % CEBE NI BN NS SR
+ HBE | |
T T | |
I A i s s B
| | | |
-4e-9 ! ! | : T J !
0 2 4 6 8 10 12 14
]

Future Samples



Numerical Examples: Stability of the MOT Solution
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* Scatterer: Dielectric unit sphere with increasing €,

* Eigenvalues of the MOT matrix for different temporal basis functions are

compared

1.0 1] x Lagrange
x HBE
x CEBE
0.5 +
—_—
= 0.0
g
=
-0.5
-1.0
T T T T T
-1.0 -0.5 0.0 0.5 1.0
Re{z}

1.0

0.5 +

-0.5

-1.0

x  Lagrange
x HBE
x CEBE

-1.0

-0.5 0.5 1.0

1.0 A

0.5 1

-0.5 -

-1.0 A

x  Lagrange
x HBE

-0.5 1.0

-1.0



Numerical Examples: Accuracy of the MOT oy iy € KAUST

Solution

* Scatterer: Dielectric shell
* & = 3, inner radius: 0.75m, outer radius 1m
* Excitation: E™(r,t)=pG(t— t,—r-k/c)

G(1) = cos(2m f;t)exp[—t* / (20°)] kI_)
f,=40MHz, f, =20MHz,0 =3/(2nf, ), t =l4o

-100 0

-200 - -20 ~

g -300 401
= /M
= =
w2
&
-400 - -60 1
Mie Series
—— CEBE Error
—— HBE Error
-500 T T T -80 T T !
0 200 400 600 800 0 100 200 300

Time [ns] [deg]



Numerical Examples: Accuracy of the MOT gt s € KAUST
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Solution

* Scatterer: Dielectric shell
* & =100, inner radius: 0.75m, outer radius 1m
* Excitation: E™(r,t)=pG(t— t,—r-k/c)

G(1) = cos(2m f;t)exp[—t* / (20°)]
f() = ISMHZ’J[bw =9MHz, o = 3/(27l'fbw), tp = 140

-100 0

-10

-200 +

—— CEBE -20 -

-30 4

Flux [dB]
RCS [dB]

-40 -

Mie Series
——— CEBE
—— CEBE Error

-400 - -50 -

-60 A

-500

-70

T T T T T . . .
0 1000 2000 - 3000 4000 5000 0 100 200 200
ime [ns] [deg]



2 _‘

Conclusions and Future/Ongoing Work e g NN

cience and Technology

* Highlights:
* A highly stable TDVIE solver is formulated and implemented

* An extrapolation scheme defined over the complex frequency plane helps to
achieve stability

* Numerical results demonstrate the accuracy and stability of the MOT solution on
high contrast scatterers

* Ongoing Work:
* Applying the TDVIE solver on realistic structures
* Developing an explicit MOT scheme for solving the TDVIE
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Facilities

Work Force Computational Resources

PhD Students

Post-Doctoral Researchers

Shaheen

= |BM'’s 16-Rack Blue Gene/P, ~65k computing
cores, 222 teraflops/sec

Muhammad Amin
Abdulla Desmal
Ismail Uysal
Sadeed Sayed
Noha Alharthi

Ali Imran Sandhu

= Expandable to petascale computing

= Supported by IBM and KAUST Supercomputing
Laboratory (KSL)

Noor

Ozum Asirim
= Beowulf class heterogeneous cluster

Alumni

Kostyantyn Sirenko, PhD = |ntel Xeon X5570, IBM Power6, ~1000 cores

Arda Ulku, PhD = Supported by KAUST Research Computing

Yifei Shi, PhD
Mohamed Farhat, PhD

Mohamed Salem, PhD (Mar. 2013)
Ahmed Al-Jarro, PhD (Nov. 2012)
Meilin Liu, PhD (Jan. 2012)

Umair Khalid (MS degree, Dec. 2010)
Muhammad Furqgan (Feb. 2012)

Abdul Haseeb Muhammed (Apr. 2011)

CEML: http://maxwell.kaust.edu.sa
KAUST Supercomputing Laboratory: http://www.hpc.kaust.edu.sa



Computational Electromagnetics (CEM) 1 ()

Science and Technology

Engineering
Applled. Computer Hardware/
Mathematics Soft
Models, oftware
approximations, error
Novel and robust analysis Computational resources, new and
formulations, fast specially designed architectures,
algorithms parallelization strategies,
programming languages
; Multi-physics modeling and
: simulation frameworks: Coupled
I_Electromagngtlcs_, Slmulat|on Tools for Solving P problems of structural, thermal,
engineering appllcatlons Maxwell Equations and electromagnetic
applications

Main objective in CEM research: Developing efficient, rigorous, and accurate numerical
methods for characterizing electromagnetic wave interactions on electrically large, multi-
scale, and realistically complex structures.



