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Abstract: These lecture notes provide an introduction to the subject of data assimilation, based on
an underlying formulation as a Bayesian inverse problem, and from an applied mathematics perspec-
tive. Various standard methods are derived, analyzed and discussed from this Bayesian standpoint.
Furthermore, continuous time formulations of the data assimilation problem are obtained, by taking
a high observation frequency limit of the discrete time formulation. Study of these continuous time
formulations provide insight into the mechanisms at play when dynamical models are combined with
data; the continuous time limits also provide explicit algorithms appropriate for high frequency data.
Explicit calculations, numerical examples and MATLAB code are provided throughout the notes in order
to illustrate the theory.
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1. Discrete Time: Formulation

In this Chapter we introduce the mathematical framework for discrete-time data assimilation. Section 1.1
describes the mathematical models we use for the underlying signal, which we wish to recover, and for the
data, which we use for the recovery. In section 1.2 we introduce a number of examples used throughout
the text to illustrate the theory. Sections 1.3 and 1.4 respectively describe two key problems related to the
conditioning of the signal v on the data y, namely smoothing and filtering; in section 1.5 we describe
how these two key problems are related. Section 1.6 proves that the smoothing problem is well-posed and,
using the connection to filtering described in 1.5, that the filtering problem is well-posed; here well-posedness
refers to continuity of the desired conditioned probability distribution with respect to the observed data.
Section 1.7 discusses approaches to evaluating the quality of data assimilation algorithms. In section 1.8 we
describe various illustrations of the foregoing theory and conclude the Chapter with section 1.9 devoted to
a bibliographyical overview.

Throughout ((, SN |) denotes the Euclidean inner-product and norm on R, for any integer ¢. For

any positive-definite symmetric A € R*** we introduce the inner-product (-,-)4 = (A_%-,A_%-) and the
resulting norm |-| 4 = |A~2|. The symbol N = {0, 1,2, ...} denotes the natural numbers and Z+ = {1,2,...}
the positive integers. We use > 0 (resp. > 0) to denote positive definite (resp. positive semi-definite) for real
symmetric matrices.

1.1. Set-Up

Let ¥ : R™ — R” and consider the Markov chain v = {v;};en defined by the random map

Vjp1 = \I/(Uj) + fj, jeN, (11a)
Vo ~~ N(mO,Co), (11b)

where { = {{;}jen is an 1.i.d. sequence, independent of vy, with £ ~ N(0,X). Because (v, §) is a random
variable, so too is the solution sequence {v; }jen: the signal, which determines the state of the system at each
discrete time instance. For simplicity we assume that u and £ are independent. The probability distribution
of the random variable v quantifies the uncertainty in predictions arising from this stochastic dynamics
model.

In many applications, models such as (1.1) are supplemented by observations of the system as it evolves;
this information then changes the probability distribution on the signal, typically reducing the uncertainty.
To describe such situations we assume that we are given data or observations y = {y;};cz+ defined as
follows. At each discrete time instance we observe a (possibly nonlinear) function of the signal, with additive
noise:

Yj+1 = h(vj41) + 11, 5 €N, (1.2)
where h : R" — R™ and 1 = {n;},ez+ is an i.i.d. sequence, independent of (vg,§), with 7, ~ N(0,I"). The
function & is known as the observation operator. The objective of data assimilation is to determine
information about the signal v, given data y. Mathematically we wish to solve the problem of conditioning
the random variable v on the observed data ¥, or problems closely related to this.

We will also be interested in the case where the dynamics is deterministic and (1.1) becomes

vj41 = ¥(v;), j EN, (1.3a)

Vo N(m(hC’o). (].Sb)

In this case, which we refer to as deterministic dynamics, we are interested in the random variable vy,
given the observed data y; note that vy determines all subsequent values of the signal v.

Finally we mention that in many applications the function W is the solution operator for an ordinary
differential equation (ODE) of the form

dv
i f(v), t € (0,00), (1.4a)

v(0) = . (1.4b)
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Then, assuming the solution exists for all ¢ > 0, there is a one-parameter semi-group of operators W(-;t),
parameterized by time t > 0, with the properties that

v(t) = P(vg;t), t € (0,00), (1.5a)
U(u;t+s) = \I/(\I'(u, s);t)7 t,seRT, uecR"? (1.5b)
U(u;0) = weR™ (1.5¢)

In this situation we assume that ¥(u) = ¥(u;7), i.e. the solution operator over 7 time units, where 7 is
the time between observations; thus we implicitly make the simplifying assumption that the observations
are made at equally spaced time-points, and denote the state by v; = W(v;_1;7). We use the notation
TU)(-) to denote the j—fold composition of ¥ with itself. Thus, in the case of continuous time dynamics,
U(s5jm) = ().

Throughout these notes we will make frequent reference to the concept of ergodicity. This refers to the idea
that time averages of quantities evaluated along the trajectory of a dynamical system converge to an ergodic
average which is independent of the initial condition. In the simplest setting, where the ergodic average is
with respect to an invariant measure o with Lebesgue density po, we obtain, for us, almost every vy and
some class of test functions ¢ : R” — R,

1
5D olvy) [ pe(0)o(v)do (1.6)
i=1 ’
more generally we obtain
1
3 > lvy) = - P(v) oo (dv). (1.7)
Jj=1

Probability measures and their corresponding Lebesgue densities, or probability density functions (pdfs) will
be discussed in more detail in section 1.3.

1.2. Guiding Examples

Throughout these notes we will use the following examples to illustrate the theory and algorithms presented.

Example 1.1. We consider the case of one dimensional linear dynamics where
U(v) = Av (1.8)

for some scalar A € R. Figure 1 compares the behaviour of the stochastic dynamics (1.1) and deterministic
dynamics (1.1) for the two values X = 0.5 and A = 1.05. We set ¥ = o2 and in both cases 50 iterations of
the map are shown.

We observe that the presence of noise does not significantly alter the dynamics of the system for the case
when |A| > 1, since for both the stochastic and deterministic models |v;| is as j — oo. However, the effects
of stochasticity are more pronounced when |\ < 1, since in this case the deterministic map satisfies v; — 0
whilst, for the stochastic model, v; fluctuates randomly around 0.

Using (1.1a), together with the linearity of ¥ and the Gaussianity of the noise £;, we obtain

E(vy41) = XE(vy), E(v3,;) = NE(2) + 0.

If |A| > 1 then the modulus of the mean and the variance both explode as j — oco. On the other hand, if
Al < 1, we see that E(v;) — 0 and E(v}) — o3, where

2 _ o’
1= A

o (1.9)
Indeed, since vy is Gaussian, the model (1.1a) with linear ¥ and Gaussian noise &; gives rise to a random
variable v; which is also Gaussian. Thus, from the convergence of the mean and variance of v;, we conclude
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FIG 1. Behaviour of (1.1) for U given by (1.8) for different values of A and ¥ = o2.

that v; converges weakly to the random variable N (0, 02). This is an evample of ergodicity as expressed in
(1.6), (1.7); the measure i is the Gaussian N(0,0%) and the density ps is the Lebesgue density of this
Gaussian.

Example 1.2. Now consider the case of two dimensional linear dynamics. In this case
¥ (v) = Av, (1.10)

with A a 2 X 2 dimensional matriz of one of the following three forms:

(M0 (A a (0 1
A1_<0 Az)’ AQ_(O )\)’ A3_(—1 0)

For ¢ = 1,2 the behaviour of (1.1) for ¥(u) = Apu can be understood from the analysis underling the
previous Example 1.1 and the behaviour is similar, in each coordinate, depending on whether the A value on
the diagonal is smaller than, or larger than, 1. However, the picture is more interesting when we consider the
third choice ¥(u) = Asu as, in this case, the matriz As has purely imaginary eigenvalues and corresponds
to a rotation by w/2 on the plane; this is illustrated in Figure 2a. Addition of noise into the dynamics gives
a qualitatively different picture: now the step j to j + 1 corresponds to a rotation by 7/2, composed with a
random shift of origin; this is illustrated in Figure 2b.

Example 1.3. We now consider our first nonlinear example, namely the one-dimensional dynamics for
which
U(v) = asinw. (1.11)

Figure 3 illustrates the behaviour of (1.1) for this choice of ¥ both for deterministic and stochastic dynamics.
The behaviour of the system is significantly affected by noise. In the case of deterministic dynamics, Figure 3a,
we see that eventually iterates of the discrete map converge to a period 2 solution. Although only one period 2
solution is seen in this single trajectory, we can deduce that there will be another period 2 solution, related to
this one by the symmetry u — —u. This second solution is manifest when we consider stochastic dynamics.
Figure 3b demonstrates that the inclusion of noise significantly changes the behaviour of the system. The
signal now exhibits bistable behaviour and, within each mode of the behavioural dynamics, vestiges of the
period 2 dynamics may be seen: the upper mode of the dynamics is related to the period 2 solution shown in
Figure 3a and the lower mode to the period 2 solution found from applying the symmetry u — —u.

A good way of visualizing ergodicity is via the empirical measure, or histogram, generated by a trajectory
of the dynamical system. Equation (1.6) formalizes the idea that the histogram, in the large J limit, converges
to the probability density function of a random wvariable, independently of the starting point vy. Thinking in
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FIG 2. Behaviour of (1.1) for U given by (1.10), and ¥ = o2.
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FIG 3. Behaviour of (1.1) for U given by (1.11) for a = 2.5 and ¥ = 02, see also pl.m in Section 4.1.1.

terms of pdfs of the signal, or functions of the signal, and neglecting time-ordering information, is a very
useful viewpoint throughout these notes.

Histograms wvisualize complexr dynamical behaviour such as that seen in Figure 3b by ignoring time-
correlation in the signal and simply keeping track of where the solution goes in time, but not the order
in which places are visited. This is illustrated in Figure 4a, where we plot the histogram corresponding to
the dynamics shown in Figure 3b, but calculated using a simulation of length J = 107. We observe that the
system quickly forgets its initial condition and spends an almost equal proportion of time around the positive
and negative period 2 solutions of the underlying deterministic map. The Figure 4a would change very little
if the system were started from a different initial condition, reflecting ergodicity of the underlying map.

Example 1.4. We now consider a second one-dimensional and nonlinear map, for which
U(v) =rv(l —v). (1.12)

We consider initial data v € [0, 1] noting that, for r € [0,4], the signal will then satisfy v; € [0,1] for all j, in
the case of the deterministic dynamics (1.3). We confine our discussion here to the deterministic case which
can itself exhibit quite rich behaviour. In particular, the behaviour of (1.3, 1.12) can be seen in Figure 5 for
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the values of r = 2 and r = 4. These values of v have the desirable property that it is possible to determine
the signal analytically. For r = 2 one obtains

1 1 J
i=— — —(1—2u)? 1.13
b=~ 50— 200)?, (113)
which implies that, for any value of vo # 0,1, v; — 1/2 as we can also see in Figure 5a. For vy = 0 the
solution remains at the unstable fixed point 0, whilst for vg = 1 the solution maps onto 0 in one step, and
then remains there. In the case r = 4 the solution is given by

v; = 4sin®(2770), with vy = 4sin®(70) (1.14)
This solution can also be expressed in the form
v; = sin?(272;). (1.15)
where
2z;, 0<z; < %7
z =
T 21, b<z <,
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F1G 6. Projection of the Lorenz’63 attractor onto two different pairs of coordinates.

and using this formula it is possible to show that this map produces chaotic dynamics for almost all initial
conditions. This is illustrated in Figure 5b, where we plot the first 100 iterations of the map. In addition, in
Figure 4b, we plot the pdf using a long trajectory of v; of length J = 107, demonstrating the ergodicity of the
map. In fact there is an analytic formula for the steady state value of the pdf for J — oo and it is given by

plz) =n te= /21— 2)7V2, (1.16)

Example 1.5. Turning now to maps ¥ derived from differential equations, the simplest case is to consider
linear autonomous dynamical systems of the form

% = Lv, (1.17a)

v(0) = . (1.17b)
Then ¥(u) = Au with A = exp(Lh).

Example 1.6. The Lorenz 63 model is perhaps the simplest continuous-time system to exhibit sensitivity to
initial conditions and chaos. It is a system of three coupled non-linear ordinary differential equations whose
solution v € R3, where v = (v, v, v3), satisfies*

dv

—dtl = avy —vy), (1.18a)
dv

d—; = —Qu| — vy — V103, (1.18b)
d

% v1vg — bug — b(r + ). (1.18¢)

Note that we have employed a coordinate system where the origin in the original version of the equations
proposed by Lorenz is shifted. In the coordinate system that we employ here we have equation (1.4) with
vector field f satisfying

(f(v),0) < a— blof? (1.19)
for some a,b > 0. This implies the existence of an absorbing set:
limsup |v()]* < R (1.20)
t—o0

IHere index denotes components of the solution, not discrete time.
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Fic 7. Dynamics of the Lorenz’63 model in the chaotic regime (a,b,r) = (10, 8 28)

for any R > a/b. Mapping the ball B(0; R) forward under the dynamics gives the global attractor for the
dynamics. In Figure 6 we visualize this attractor, projected onto two different pairs of coordinates at the
classical parameter values (o, b,r) = (10, %, 28).

Throughout these notes we will use the classical parameter values (a,b,r) = (10, %,28) in all of our
numerical experiments; at these values the system is ergodic and exhibits sensitive dependence with respect to
the initial condition. A trajectory of uy versus time can be found in Figure 7a and in Figure 7b we illustrate
the evolution of a small perturbation to the initial condition which generated Figure 7a; to be explicit we plot
the evolution of the error in the Euclidean norm | -|, for an initial perturbation of magnitude 10~%. Figure
6 suggests that the ergodic measure lso 1S supported on a strange set with Lebesque measure zero, and this
is indeed the case; for this example there is no Lebesque density po, for the invariant measure, reflecting the

fact that the attractor has a fractal dimension less than three.

Example 1.7. The Lorenz 96 model is a simple dynamical system, of tunable dimension, which was designed
as a caricature of the dynamics of Rossby waves in atmospheric dynamics. The equations have a periodic
“ring” formulation and take the form?

dv
ditk = ’Uk—1(’0k+1 7’[}]@_2) —v+F, ked{l,--- K}, (1.21a)
Vo = VK, VK41 =U1, U—1 = VK_1. (1.21b)

Equation (1.21) satisfies the same dissipativity property (1.19) satisfied by the Lorenz 63 model, for appro-
priate choice of a,b > 0, and hence also satisfies the absorbing ball property (1.20) and thus has a global
attractor.

In Figure 8a we plot a trajectory of vy versus time for F =8 and K = 40. Furthermore, as we did in the
case of the Lorenz ’63 model, we also show the evolution of the FEuclidean norm of the error |-| for an initial
perturbation of magnitude 10™4; this is displayed in Figure 8b and clearly demonstrates sensitive dependence

on initial conditions. We visualize the attractor, projected onto two different pairs of coordinates, in Figure
9.

2Again, here index denotes components of the solution, not discrete time.




15

101 1
5
0
107 1
_5¢ 1
-6
_1 O 1 1 1 1 10 1 1 1 1
0 20 40 60 80 100 0 20 40 60 80 100
(a) v1 as a function of time (b) Evolution of error for a small initial perturbation
F1G 8. Dynamics of the Lorenz’96 model in the chaotic regime (F, K) = (8,40)
15 15
101 1
5r |
0r |
_5- |
_1 1 1 1 1 _1q 1 1 1 1
-10 -5 0 5 10 15 -10 -5 0 5 10 15

(a) v1 vs v (b) v1 vs vg_1

Fic 9. Projection of the Lorenz’96 attractor onto two different pairs of coordinates.

10



1.3. Smoothing Problem
1.8.1. Probabilistic Formulation of Data Assimilation

Together (1.1) and (1.2) provide a probabilistic model for the jointly varying random variable (v,y). In the
case of deterministic dynamics, (1.3) and (1.2) provide a probabilistic model for the jointly varying random
variable (vg,y). Thus in both cases we have a random variable (u,y), with u = v (resp. u = vp) in the
stochastic (resp. deterministic) case. Our aim is to find out information about v, in the stochastic case, or
v in the deterministic case, from observation of a single instance of y. The natural probabilistic approach
to this problem is to try and find the random variable u given y, denoted wu|y. This constitutes the Bayesian
formulation of the problem of determining information about the signal arising in a noisy dynamical model,
based on noisy observations of that signal. We will refer to the conditioned random variable uly, in the case of
either the stochastic dynamics or deterministics dynamics, as the smoothing distribution. It is a random
variable which contains all the probabilistic information about the signal, given our observations. The key
formula which drives this approach is given by Bayes’ Theorem which we now discuss in abstract form.

1.3.2. Bayesian Probability

Throughout these notes we will consider random variables on R? for a range of different integers £. In all cases
we assume that the random variable has a positive Lebesgue density, everywhere on R?, as this will simplify
the presentation. Given a random variable a we write P(a) to denote the Lebesgue density associated with
this random variable; we call this the pdf (probability density function). For any function f : R* — RP we
use Ef(a) to denote the expected value of the random variable f(a) on RP. Sometimes a will be thought
of as varying with respect to a number of different probability measures, with different Lebesgue densities.
In that situation, when we wish to denote the particular measure p that we are using at a given point in
our arguments, then we may write P* and E* to denote the corresponding pdf and expectation. If the pair
(a,b) is a jointly varying random variable then a|b denotes the random variable a given b, and we denote
its pdf P(a|b). The pushforward of a pdf p on R! under a map ® : R® — R’ is denoted ® % p. It may be
calculated explicitly by means of change of variable formula under an integral. Indeed if ® is invertible then
@+ B(uj[Y;) = B(@~(0)[;) DO~ (v)].

If (a,b) € R x R™ is a random variable then we denote the associated pdf by P(a,b), and we denote
the pdfs of the conditional random variables alb and bla by P(a|b) and P(bla) respectively. The rules of
conditional probability show that

P(a, b) = P(a[b)P(b), (1.22a)
P(a, b) = P(bla)P(a). (1.22b)

We will make frequent use of these formulae in the notes. We also note that integrating over the variable b
in (1.22a) gives the identity

P(a) = / P(a, b)db (1.23a)
/ P(a|b)P(b)db. (1.23b)
Bayes’ formula for pdfs, which we will use frequently throughout the notes, states that
1
P(alb) = WIP’(MCL)P(@) (1.24)

and it also follows from (1.23): the formula follows in a straightforward way from dividing one of the two
formulae for the definitions of the conditioned random variables a|b and bla by the other. When Bayes’
formula (1.24) is used in statistics then typically b is the data and a the unknown about which we wish to
find information, using the data. In this context we refer to P(a) as the prior, to P(bla) as the likelihood
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and to P(alb) as the posterior. The beauty of Bayes’s formula as a tool in applied mathematics is that

the likelihood is often easy to determine explicitly, given reasonable assumptions on the observational noise,
whilst there is considerable flexibility inherent in modelling prior knowledge via probabilities, to give the
prior. Combining the prior and likelihood as in (1.24) gives the posterior, which is the random variable of
interest; whilst the probability distributions used to define the likelihood P(bla) (via a probability density on
the data space) and prior P(a) (via a probability on the space of unknowns) may be quite simple, the resulting
posterior probability distribution can be very complicated. A second key point to note about Bayes’ formula
in this context is that P(b), which normalizes the posterior to a pdf, may be hard to determine explicitly,
but algorithms exist to find information from the posterior without knowing this normalization. We return
to this point later.

1.8.3. Stochastic Dynamics

We wish to find the signal v from (1.1) from a single instance of data y given by (1.2). To be more precise we
wish to condition the signal on a discrete time interval Jo = {0, ..., J}, given data on the discrete time interval
J = {1,..., J}; we refer to Jy as the data assimilation window. We define v = {v;}je5,,y = {y;}je1, &
{&}jen, and n = {n;};e1,- The smoothing distribution here is the distribution of the conditioned random
variable v|y. Recall that we have assumed that u, & and 7 are mutually independent random variables. With
this fact in hand we may apply Bayes’ formula to find the pdf P(v|y).

Prior The prior on v is specified by (1.1), together with the independence of u and ¢ and the i.i.d.
structure of £. First note that, using (1.22) and the i.i.d. structure of £ in turn, we obtain

( ) IED((UJfUJ 1, aUO)
P(vslvs—1,--- ,v0)P(vs-1,- -+ ,v0)
(UJ|UJ 1) (UJ—la"' 7110)-

Proceeding inductively gives
P(v) = IL/ 2y P(v;41]v;)P(vo).

Now 1 )
P(vg) eXp(7§|C()7§(UQ - mo)ﬁ)
whilst ) )
P(vj41|v;) exp(—i’E_% (v; — \I/(vj,l))’ )
Thus
P(v) oc exp(—J(v))
where . 2 = 1 2
J(v) == 5‘00 2 (vo —mo)|” + Z §|E_f(vj+1 —W(vy))|" (1.25)
§=0

The pdf P(v) = po(v) proportional to exp(—J(v)) determines a prior measure pg on RHo/*7,
Likelihood The likelihood of the data y|v is determined as follows. It is a (Gaussian) probability
distribution on RF>*™ with pdf P(y|v) proportional to exp(—®(v;y)), where
J-1 ,
P(v;y) = Z 0% (g1 — h(v1))]

=0

(1.26)

To see this note that, because of the i.i.d nature of the sequence 7, it follows that
P(y|v) = I/ 20 P(y;410)
= H‘.];(}P(yj+1|vj+1
o I GXID(—*|F 2 (yjr1 = h(vjt1)) |2)
= exp(—®(v;y)).
12



In the applied literture mg and Cy are often referred to as the background mean and background
covariance respectively; we refer to ® as the model-data misfit functional.

Using Bayes’ formula (1.24) we can combine the prior and the likelihood to determine the posterior
distribution, that is the smoothing distribution, on v|y. We denote the measure with this distribution by p.

Theorem 1.8. The posterior smoothing distribution on v|y for the stochastic dynamics model (1.1), (1.2)
is a probability measure 1 on R¥OX™ with pdf P(v|y) = p(v) proportional to exp(—I(v;y)) where

I(v;y) = J(v) + D(v;y). (1.27)
Proof. Bayes’ formula (1.24) gives us . .
Pluly) =~

Thus, ignoring constants of proportionality which depend only on y,
P(vly) oc P(ylu)P(vo)
o exp(—®(v; y)) exp(—J(v))
= exp(—I(v;y)).
O

Note that, although the preceding calculations required only knowledge of the pdfs of Gaussian distri-
butions, the resulting posterior distribution is non-Gauassian in general, unless ¥ and h are linear. This is
because, unless ¥ and h are linear, I(-; y) is not quadratic.

1.3.4. Deterministic Dynamics

It is also of interest to study the posterior distribution on the initial condition in the case where the model
dynamics contains no noise, and is given by (1.3); this we now do. Recall that ¥{)(.) denotes the j—fold
composition of ¥(-) with itself. In the following we sometimes refer to Jo as the background penalization,
and mg and Cj as the background mean and covariance; we refer to ®( as the model-data misfit functional.

Theorem 1.9. The posterior smoothing distribution on vg|y for the the deterministic dynamics model (1.3),
(1.2) is a probability measure v on R™ with density P(vo|y) = o(vo) proportional to exp(—lg(vo;y)) where

lo(vos y) = Jo(Uo) + ®o(vo; y) (1.28a)
Jo(’U() == *|C 'UO - m0)|2 (128b)

vay

“2

~3 (yj+1 - h(‘I’(jH)(UO))) ’2- (1.28c¢)

j=0
Proof. We again use Bayes’ Theorem which states that

P(y|vo)P(vo)
Ply)

Thus, ignoring constants of proportionality which depend only on y,
P(voly) o< P(y|vo)P(v)
x eXp(—‘I’o(Uo;y)) exp(~31Cq *( — mo)l?)
(vo; y))-

xp(—
To see that P(y|vo) is proportional to exp( Do (vosy ) follows from the fact that y;|vg form an i.i.d sequence
I) with v; = W) (vy). O

13
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1.4. Filtering Problem

Note that the smoothing problem considered in the previous section involves, potentially, conditioning v; on
data yi with £ > j. Such conditioning can only be performed off-line and is of no use in on-line scenarios
where we want to determine information on the state of the signal now hence using only data from the
past up to the present. To study this situation, let Y; = {y;}/_, denote the accumulated data up to time
j. Filtering is concerned with the sequential updating of P(v;|Y;), the pdf of v;|Y;, as the index j is
incremented. This update is defined by the following two-step procedure which provides a prescription for
computing P(v;41|Yj4+1) from P(v;]Y;) via a two step-procedure: prediction which computes the mapping
P(v;]Y;) + P(vj41]Y;) and analysis which computes P(v;41|Y;) — P(v;41]Y;41) by application of Bayes’
formula .

Prediction Note that P(v;11|Y;,v;) = P(v;41|v;) because Y; contains noisy and indirect information about
v; and cannot improve upon perfect knowledge of the variable v;. Thus, by (1.23), we deduce that

PlsnlVy) = [ PlogalVs, oY), (1.298)

:/’ P(vjt1v;)P(v;]Y])dv; (1.29b)

Note that, since the forward model equation (1.1) determines P(v;41|v;), this prediction step provides the
map from P(v;|Y;) to P(vj41]Y;). This prediction step simplifies in the case of deterministic dynamics (1.3);
in this case it simply corresponds to computing the pushforward of P(v;|Y;) under the map V.

Analysis Note that P(yj+1|vj+1,Y;) = P(yj+1|vj+1) because because Y, contains noisy and indirect infor-
mation about v;4; and cannot improve upon perfect knowledge of the variable v;;. Thus, using Bayes’
formula (1.24), we deduce that

P(vj+1]Yj4+1) = P(vj41]Yj, yje1)
_ Plyj1lvj41, Y5)P(vj411Y))
P(yj+11Y;)
P(yj+1]vj+1)P(v41]Y5)

=T Ryl (1:30)

Since the observation equation (1.2) determines P(y;41|vj41), this analysis step provides a map from P(v;11|Y;)
to P(vjt1[Yj41).

Filtering Update Together, then, the prediction and analysis step provide a mapping from P(v;]Y;) to
P(vj41]Yj41). Indeed if we let 1i; denote the probability measure on R™ corresponding to the density P(v;|Y;)
and [i41 be the probability measure on R"™ corresponding to the density P(v;41]Y;) then the prediction step
maps p; to fi;41 whilst the analysis step maps fij 41 to p;41. However, there is, in general, no easily usable
closed form expression for the density of 4, namely P(v;]Y;). Nevertheless, formulae (1.29), (1.30) form the
starting point for numerous algorithms to approximate P(v;|Y;).

1.5. Filtering and Smoothing are Related

The filtering and smoothing approaches to determining the signal from the data are distinct, but related.
They are related by the fact that in both cases the solution computed at the end of any specified time-interval
is conditioned on the same data; this is made precise in the following.

Theorem 1.10. Let P(v|y) denote the smoothing distribution on the discrete time interval j € Jo, and
P(vs|Yy) the filtering distribution at time j = J for the stochastic dynamics model (1.1). Then the marginal
of the smoothing distribution on vy is the same as the filtering distribution at time J:

/P(v|y)dvodv1...va,1 =P(vs|Y7).

14



Proof. Note that y = Y. Since v = (vg, ..., v5_1,vy) the result follows trivially. O

Remark 1.11. Note that the marginal of the smoothing distribution on say v;, j < J is not equal to the
filter P(v;|Y;). This is because the smoother induces a distribution on v; which is influenced by the entire
data stream Y; =y = {yi1}1ey; in contrast the filter at j involves only the data Y; = {yi}icqu,....53-

It is also interesting to mention the relationship between filtering and smoothing in the case of noise-free
dynamics. In this case the filtering distribution P(v;|Y;) is simply found as the pushforward of the smoothing
distribution on P(vg]Y;) under W) that is under j applications of W.

Theorem 1.12. Let P(vgly) denote the smoothing distribution on the discrete time interval j € Jo, and
P(vs|Yy) the filtering distribution at time j = J for the deterministic dynamics model (1.3). Then the
pushforward of the smoothing distribution on vy under W) is the same as the filtering distribution at time
J:

T % P(v|Yy) = P(vs|Y7).

1.6. Well-Posedness

Well-posedness of a mathematical problem refers, generally, to the existence of a unique solution which de-
pends continuously on the specified data. We have shown, for both filtering and smoothing, how to construct
a probabilistic solution to the problem of determining the signal given the data. We now investigate the
continuous dependence of this solution on the data.

To this end, let u and p’ denote two probability measures which have strictly positive Lebesgue densities
p and p’ on RY. Throughout this section, all integrals are over R’. Define the Hellinger distance between

wand p' as
N 1 . o' (z)
dyen(p, 1') = 5 /RZ 1 02) p(z)dx

2\ 3
1l [P
SE (1 o) ) . (1.31)

It is of interest to relate this to the perhaps better known total variation distance (TV) defined by

n_ 1 p'(x)
drv(p, 1) = 5 /R[ 1 - (@) ‘P(l”)dT/
1o, P@)
=3B =25 ‘ (1.32)

The Hellinger and total variation distances are related as follows:

Lemma 1.13. Assume that two measures p and p' are both absolutely continuous with respect to Lebesgue
measure with strictly positive Lebesgue densities. Then

Nl

1
\ﬁdTv(Nvﬂl) < dyen(pts ') < dovy(p, )2 (1.33)

Proof. Let pu(dz) = p(z)dz and p'(dz) = p/(x)dx. Then

', p(a)
@(ﬂf)
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and we have

Aoy (11, 1) /’f—\/EH\ij W
G-y (b <mﬁ:>%
<\ SO Y ) (] (042 ) )

= \/idHeu(Ha Hl)

IA

as required for the lower bound. Here, and in the remainder of the proof, all integrals are over R
For the upper bound note that, for any positive a, b,

IVa— Vbl < va+ Vb

doon (1, 1) /]J_W\\f+ Ly
5 [h-%

—dTvNM)

Thus

O O

Why do we bother to introduce the Hellinger distance, rather than working with the more familiar TV
distance? The answer stems from the following calculations. Let f : R® — RP. Then

B f(z) — EX f(x)] < / F@) () — o (2)|dx
- / VRIF @)V + Vo (@) iwp(x) @) de

<([are ||F+ﬁ|2dx) (;/M—md)

s( / 4f<x>|2<p<x)+p’<x>>dx) : / (1_ i ((;))>20(x)da:

= 2(BX|f(2)|” + B | f()*) ? duen (1, 1)-

Thus the Hellinger metric provides a direct way of estimating changes in expectation of square integrable
functions:

=

B f(z) — B f(x)] < 2(E"|f(z)]? + E* | f()|*) 2 dpgen (1, ). (1.34)

In particular if two measures p and u' are O(e) close in the Hellinger metric, and if the function f(z) is
square integrable with respect to x distributed according to p and ', then expectations of f(x) with respect
to p and p' are also O(e) close. To get an analogous result using O(e) closeness in the TV metric requires
the stronger assumption that f is finite almost surely with respect to both p and u'. Denote the almost sure
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upper bound by fnax. Under this assumption

[EX f () — B f(2) S/If(x)llp(w)—p’(w)ldw

< 2o (5 [ 1) = )l
< 2 fmax ( /' ; )dx)

- 2fmax (

Thus if two measures p and p’ are O(e) in the TV metric and the function f is bounded almost surely with
respect to both measures then expectations of f(x) with respect to u and p' are also O(e) close. However,
if f(x) is only square-integrable with respect to p and p’ then expectations of f(x) with respect to p and
1 can only be proved to be O(e2) close in general, as follows from (1.33) and (1.34). For these reasons we
work with the Hellinger metric.

We let pp denote the prior measure on v for the smoothing problem arising in stochastic dynamics, and p
and p’ the posterior measures resulting from two different instances of the data, y and 3’ respectively. The
following theorem shows that the posterior measure is in fact Lipschitz continuous, in the Hellinger metric,
with respect to the data.

Theorem 1.14. Consider the smoothing problem arising from the stochastic dynamics model (1.1). Assume
that E#Ho (Zj;ol 1+ |[h(vj1)|?)2 < co. Then, for |y, |y'| < there exists c = c(r) such that

duen(p, ') < cly —y/'|.

Proof. Let pg,p and p’ denote the Lebesgue densities on pg, 1 and p' respectively. Then

po(v) = — exp(—J(v)),

Zo
p(v) = % exp(—J(v) — B(v:3),
o (0) = o exp(—J0) — B(usy))),

where

exp(—J(v) — (v;y/))dv.

/
2= [ exp(-J(0) - D(wi ),
/

Hence, in particular, po(dv) = po(v)dv, u(dv) = p(v)dv and p'(dv) = p’(v)dv. Furthermore

)=
exp(—J(v))dv = Zopo(v)dv = Zopo(dv).

We use this last identity repeatedly in what follows.
Thus we have

duen (ks 1) /Iv — Vo' (v)Pdv
-_—3 v, 1 -5 v, ! 2
*5/ wf et ’”*ﬁe ] haldo)
Sll +127
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where )
fi= o [ 1 b0 - O

and

2 "
/ef‘P(v,y )uo(dy)

2

1 1
Bl 7
1 1
VZ 7

Since ®(v;y) > 0 and ®(v;y’) > 0 we have

!

2= 215 7 [ 16709 - S (i)

< Zo/|‘1>(v;y) — ®(v;y")|po(dv).

By definition

J—1
1
[(vsy) = D(v3y)| < 5 D Wi = Yhalrlyio + Y — 2h(vj)|r
7=0
1 1
1 J—1 2 (I 2
<3 > Y1 — Y l? D i1 + Yjer — 2h(vis)[R
=0 =0
1
J-1 2
<My —y| [ D1+ h(vi)?
=0

Thus
1Z = Z'| < c(r)ly =]

Hence, since Z,Z' > 0, Iy < ¢(r)|ly — ¢/|. A similar argument shows that I; < ¢(r)|y — ¢’| and the proof is
complete. O
Corollary 1.15. Let f : RN — R? be such that E*|f(v)|? < co and assume further that

1

o (Z;};ol 1+ ‘h(vj+1)|2>§ < o0o. Then

X f(z) —E* f(z)| < cly — ¥/

Proof. First note that, since ®(v;y) > 0, E#|f(v)|?> < cEHo|f(v)]?, and similarly for u’. The result follows
from (1.34) and Theorem 1.14. O

Corollary 1.16. Let g : R™ — RP be such that E*0|g(v;)|? < oo and assume further that

1
[E+o (Zj;ol 1+ \h(vj+1)|2) * < oo. If py and W'y denote the filtering distributions at time J corresponding to
data Yy;,Y respectively, then
B g(a) — B*7 g()| < efYy — Y],

Proof. Since, by Theorem 1.10, p s is the marginal of the smoother on the v; coordinate, the result follows
from Corollary 1.15 by choosing f(v) = g(vy). O

A similar theorem, and corollaries, may be proved for the case of deterministic dynamics (1.3), and the
posterior P(vg|y). We state the theorem and leave its proof to the reader. We let v denote the prior Gaussian
measure N (mg,Cy) on vy for the smoothing problem arising in deterministic dynamics, and p and g’ the
posterior measures on vy resulting from two different instances of the data, y and 3’ respectively.
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Theorem 1.17. Consider the smoothing problem arising from the deterministic dynamics model (1.3).

Assume that E"° (Z}]:_ol 1+ |h(\If(j+1)(Uo)) |2>5 < 0. Then, for |y|,|y'| < r there exists ¢ = ¢(r) such that
duen(p, 1) < cly =y

1.7. Assessing The Quality of Data Assimilation Algorithms

It is helpful when studying algorithms for data assimilation to ask two questions: (i) how informative is the
data we have?; (ii) how good is our algorithm at extracting this information? We take these in turn.
Answering question (i) is independent of any particular algorithm: it concerns the properties of the
Bayesian posterior pdf itself. In some cases we will be interested in studying the properties of the probability
distribution on the signal, or the initial condition, for a particular instance of the data generated from a
particular instance of the signal, which we call the truth. In this context we will use the notation 3t = {y;}

to denote the realization of the data generated from a particular realization of the truth v = {vj} We first
discuss properties of the smoothing problem for stochastic dynamics. Posterior consistency concerns the
question of the limiting behaviour of P(v|y') as either J — oo (large data sets) or |T'| — 0 (small noise).
A key question is whether P(v|y) converges to the truth in either of these limits; this might happen, for
example, if P(v|y'") becomes closer and closer to a Dirac probability measure centred on v. When this occurs
we have Bayesian posterior consistency and it is of interest to study the rate at which the limit is attained.
Such questions concern the information content of the data; they do not refer to any algorithm and therefore
they are not concerned with the quality of any particular algorithm. When considering filtering, rather than
smoothing, a particular instance of this question concerns marginal distributions: for example one may be
concerned with posterior consistency of P(v J|yT]) with respect to a Dirac on v?} in the filtering case, see
Theorem 1.10; for the case of deterministic dynamics the distribution P(v|y') is completely determined by
P(vo|y") (see Theorem 1.12) so one may discuss posterior consistency of P(uvg|y') with respect to a Dirac on
V-

Here it is appropriate to mention the important concept of model error. In many (in fact most) appli-
cations the physical system which generates the data stream {y;} can be (sometimes significantly) different
from the mathematical model used, at least in certain aspects. This can be thought of conceptually by
imagining data generated by (1.2), with vf = {v;r} governed by the deterministic dynamics

vl = Wue(vl), jEN (1.35a)
vl = w~ N(mo,Cp). (1.35b)

Here the function Wy, governs the dynamics of the truth which underlies the data. We assume that the
true solution operator is not known to us exactly, and seek instead to combine the data with the stochastic
dynamics model (1.1); the noise {¢;} is used to allow for the discrepancy between the true solution operator
Wirne and that used in our model, namely W. It is possible to think of many variants on this situation. For
example, the dynamics of the truth may be stochastic; or the dynamics of the truth may take place in a
higher-dimensional space than that used in our models, and may need to be projected into the model space.
Statisticians sometimes refer to the situation where the data source differs from the model used as model
misspecification.

We now turn from the information content, or quality, of the data to the quality of algorithms for data
assimilation. We discuss three approaches to assessing quality. The first fully Bayesian approach can be
defined independently of the quality of the data. The second estimation approach entangles the properties of
the algorithm with the quality of the data. We discuss these two approaches in the context of the smoothing
problem for stochastic dynamics. The reader will easily see how to generalize to smoothing for deterministic
dynamics, or to filtering. The third approach is used in operational numerical weather prediction and judges
quality by the ability to predict.

Bayesian Quality Assessment. Here we assume that the algorithm under consideration provides an
approximation P,pprox(v|y) to the true posterior distribution P(v|y). We ask the question: how close is
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Papprox (v]y) to P(v|y). We might look for a distance measure between probability distributions, or we might
simply compare some important moments of the distributions, such as the mean and covariance. Note that
this version of quality assessment does not refer to the concept of a true solution v'. We may apply it with
y =y, but we may also apply it when there is model error present and the data comes from outside the
model used to perform data assimilation. However, if combined with Bayesian posterior consistency, when
y = y', then the triangle inequality relates the output of the algorithm to the truth vT.

Signal Estimation Quality Assessment. Here we assume that the algorithm under consideration
provides an approximation to the signal v underliying the data, which we denote by vapprox, i-€. that vapprox
attempts to track the signal. If the algorithm actually provides a probability distribution, then this estimate
might be, for example, the mean. We ask the question: if the algorithm is applied in the situation where the
data y' generated from the the signal vT, how close is Vapprox O v!? There are two importants effects at play
here: the first is the information content of the data — does the data actually contain enough information to
allow for accurate reconstruction of the signal in principle; and the second is the role of the specific algorithm
used — does the specific algorithm in question have the ability to extract this information when it is present.
This approach thus measures the overall effect of these two in combination.

Forecast Skill. In many cases the goal of data assimilation is to provide better forecasts of the future, for
example in numerical weather prediction. In this context data assimilation algorithms can be benchmarked
by their ability to make forecasts. This can be discussed in both the Bayesian Quality and Signal Estimation
senses. For simplicity of exposition we discuss Bayesian Estimation forecast skill in the context of stochastic
dynamics. The Bayesian k-lag forecast skill can be defined by studying the distance between the approxi-
mation Pupprox(v]y) and P(v]y) when both are pushed forward from the end-point of the data assimilation
window by k applications of the dynamical model (1.1); this model defines a Markov transition kernel which
is applied k—times to produce a forecast. We discuss Signal Estimation forecast skill in the context of de-
terministic dynamics. Using vapprox at the end point of the assimilation window as an initial condition, we
run the model (1.3) forward by k steps and compare the output with ’U; 45+ In practical application, this
forecast methodology inherently confronts the effect of model error, since the data used to test forecasts is
real data which is not generated by the model used to assimilate, as well as information content in the data
and algorithm quality.

Consistency Checks. We describe an important consistency check that may be applied to the output
of an algorithm. Given an approximation of the updated signal {vapprox,;} for j € Jo the data assimilation
window, we can consider the corresponding approximation just before the update, i.e. the one-step forecasts
Vapprox,j based on the previous updated estimate vapprox,j—1. We can study the approximate innovations, or
one-step forecast-observation discrepancies given by

dj = [M(Vapprox,j) — Yj)- (1.36)

If we assume that Vypprox,; s & good approximation to E(v;|Y;_1) for j € J and we also have an approximation
of the covariance é\'appmxyj of the conditioned signal v;|Y;_1, then the statistics of {d;};cy can be compared
with this approximation, given the assumed Gaussian statistics of the model. In particular if h(-) := H- is
linear, and J is large enough we would expect that

%Zdj ~0, and %Zdj ®d;j ~ H %anppmx,j H" +T.
2 Jj€eJ Jjel
If the empirical statistics of the innovations are inconsistent with the assumed model, then they can be used
to improve the model used in the future; this is known as reanalysis. There are a number of variants on this
consistency check, and generalizations to nonlinear observation operators are also possible. We discuss the
idea of the variant known as rank histograms at the end of Chapter 3.

1.8. Illustrations

In order to build intuition concerning the probabilistic viewpoint on data assimilation we describe some
simple examples where the posterior distribution may be visualized easily. For this reason we concentrate

20



on the case of one-dimensional deterministic dynamics; the posterior pdf P(uvg|y) for deterministic dynamics
is given by Theorem 1.9. It is one-dimensional when the dynamics is one-dimensional. In section 2 we will
introduce more sophisticted sampling methods to probe probability distributions in higher dimensions which
arise from noisy dynamics and/or from high dimensional models.

Figure 10 concerns the scalar linear problem from Example 1.1 (recall that throughout this section we
consider only the case of deterministic dynamics) with A = 0.5. We employ a prior N(4,5), we assume that
h(v) = v, and we set I' = 2 and consider two different values of v and two different values of J, the number
of observations. The figure shows the posterior distribution in these various parameter regimes. The true
value of the initial condition which underlies the data is U(T) = 0.5. For both v = 1.0 and 0.1 we see that, as the
number of observations J increases, the posterior distribution appears to converge to a limiting distribution.
However for smaller + the limiting distribution has much smaller variance, and is centred closer to the true
initial condition at 0.5. Both of these observations can be explained, using the fact that the problem is
explicitly solvable: we show that for fixed v and J — oo the posterior distribution has a limit, which is a
Gaussian with non-zero variance. And for fixed J as v — 0 the posterior distribution converges to a Dirac
measure (Gaussian with zero variance) centred at the truth vg.

To see these facts we start by noting that from Theorem 1.9 the posterior distribution on vg|y is propor-
tional to the exponential of

J—1

Dy = X o + s |vg — mo|?

1 1
20(2)

lo(voy) = 22

=0

where 03 denotes the prior variance Cy. As a quadratic form in vy this defines a Gaussian posterior distri-

. } 3 . . 2 .
bution and we may complete the square to find the posterior mean m and variance o :

1 T I B L G W
O e 1 G e e =

Upost Y 99
and ;
-1
1 1 ; 1
;2 _M=3 Z ATy 1+ —m.
post Y j=0 o)

We note immediately that the posterior variance is independent of the data. Furthermore, if we fix v and let
J — oo then for any |A\| < 1 we see that the large J limit of the posterior variance is determined by

Aif_icjij+i
2 A2\l =2 o3

Jpost

and is non-zero; thus uncertainty remains in the posterior, even in the limit of large data. On the other hand,
if we fix J and let ¥ — 0 then o7 — 0 so that uncertainty disappears in the limit. It is then natural to
ask what happens to the mean. To this end we assume that the data is itself generated by the linear model
of Example 1.1 so that

yir1 =Nl + ¢

where (; is an 1.i.d. Gaussian sequence with ¢(; ~ N(0,1). Then

1 1 AZ =224y o TR 1
- m= 7(7)00 + ; Z)\(J-i- )Cj+1 + ;gmo'

Ugost Y 1— )2 =0
Using the formula for Jgost we obtain
/\2 _ )\2J+2) 72 /\2 _ )\2J+2 ; J—1 ' 72
o Mt M= (7)1) +y Y AU+ —m.
( 1— )2 o3 1—)2 0 Z J o}

§=0
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F1G 10. Posterior distribution for Examples 1.1 for different levels of observational noise. The true initial condition used in
both cases is vg = 0.5, while we have assumed that Co =5 and mo = 4 for the prior distribution.

From this it follows that, for fixed J and as v — 0, m — vg, almost surely with respect to the noise realization
{¢;}jer. This is an example of posterior consistency.

We now study Example 1.4 in which the true dynamics are no longer linear. We start our investigation
taking » = 2 and investigate the effect of choosing different prior distributions. Before discussing the prop-
erties of the posterior we draw attention to two facts. Firstly, as Figure 5a shows, the system converges in a
small number of steps to the fixed point at 1/2 for this value of r = 2. And secondly the initial conditions
v and 1 — vy both result in the same trajectory, if the initial condition is ignored. The first point implies
that, after a small number of steps, the observed trajectory contains very little information about the initial
condition. The second point means that, since we observe from the first step onwards, only the prior can
distinguish between vy and 1 — vy as the starting point.

Figure 11 concerns an experiment in which the true initial condition underlying the data is vg = 0.1.
Two different priors are used, both with Cy = 0.01, giving a standard deviation of 0.1, but with different
means. The figure illustrates two facts: firstly, even with 103 observations, the posterior contains considerable
uncertainty, reflecting the first point above. Secondly the prior mean has an important role in the form of
the posterior pdf: shifting the prior mean to the right, from mgy = 0.4 to my = 0.7, results in a posterior
which favours the initial condition 1 — vg; rather than the truth U(T).

This behaviour of the posterior changes completely if we assume a flatter prior. This is ilustrated in
Figure 12 where we consider the prior N(0.4,Cy) with Cy = 0.5 and 5 respectively. As we increase the prior
covariance the mean players a much weaker role than in the preceding experiments: we now obtain a bimodal
posterior centred around both the true initial condition vg, and also around 1 — U(JS.

In Figure 13 we consider the quadratic map (1.12) with r» = 4. We use the prior N(0.5,0.01) and observa-
tional standard deviation v = 0.2. Here, after only five observations the posterior is very peaked, although
because of the v — 1 — v symmetry mentioned above, there are two symmetrically related peaks; see Figure
13a. It is instructive to look at the negative of the logarithm of the posterior pdf which, upto an additive
constant, is given by lp(vg;y) in Theorem 1.9. The function ly(+;y) is shown in Figure 13b. Its complexity
indicates the considerable complications underlying solution of the smoothing problem. We will return to
this last point in detail later. Here we simply observe that normalizing the posterior distribution requires
evaluation of the integral

/efl(”"’y)dvo.

This integral may often be determined almost entirely by very small intervals of vy, meaning that this
calculation requires some care. We note, however, that the sampling methods that we will describe in the
next chapter do not require evaluation of this integral.
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FiG 11. Posterior distribution for Ezample 1.4 for r = 2 in the case of different means for the prior distribution. We have
used Cp = 0.01, v = 0.1 and true initial condition vo = 0.1, see also p2.m in Section 4.1.2.

1.9. Bibliographic Notes

e Section 1.1 Data Assimilation is a subject which has its roots in the geophysical sciences, and is driven
by the desire to improve inaccurate models of complex dynamically evolving phenomena by means of
incorporation of data. The book [Kal03] describes data assimilation from the viewpoint of atmospheric
weather prediction, whilst the book [Ben02] describes the subject from the viewpoint of oceanography.
These two subjects were the initial drivers for evolution of the field. However, other applications are
increasingly using the methodology of data assimilation, and the oil industry in particular is heavily
involved in the use, and development, of algorithms in this area [ORLO0S]. The recent book [Abal3]
provides a perspective on the subject the the viewpoint of physics and nonlinear dynamical systems.
The article [ICGLI7] is a useful one to read because it establishes a notation which is now widely used
in the applied communities and the articles [Nic03, AJSVO08] provide simple introductions to various
aspects of the subject from a mathematical perspective. The special edition of the journal PhysicaD,
devoted to Data Assimilation, [IJ07], provides an overview of the state of the art around a decade ago.
Throughout we assume that the model noise £ and observational noise 7 are Gaussian for convenience
only and that this could be easily generalized.

e Section 1.2 The subject of deterministic discrete time dynamical systems of the form (1.3) is overviewed
in numerous texts; see [Wig03] and the references therein, and Chapter 1 of [SH96], for example. The
subject of stochastic discrete time dynamical systems of the form (1.1), and in particular the property
of ergodicity which underlies Figure 4, is covered in some depth in [MT93]. The exact solutions of the
quadratic map (1.12) for » = 2 and r = 4 may be found in [Sch70] and [Lor64] respectively. The Lorenz
’63 model was introduced in [Lor63]. Not only does this paper demonstrate the possibility of chaotic
behviour and sensitivity with respect to initial conditions, but it also makes a concrete connection
between the three dimensional continuous time dynamical system and a one-dimensional chaotic map
of the form (1.1). Furthermore, a subsequent computer assisted proof demonstrated rigorously that the
ODE does indeed exhibit chaos [Tuc99, Tuc02]. The book [Spa82] discusses properties of the Lorenz 63
model in some detail and the book [Fal86] discussed properties such as fractcal dimension. The shift
of origin that we have adopted for the Lorenz '63 model is explained in [Tem97]; it enables the model
to be written in an abstract form which includes many geophysical models of interest, including the
Lorenz '96 model introduced in [Lor96], and the Navier-Stokes equation on a two-dimensional torus
[MWO06, Tem97]. We now briefly describe this common abstract form. The vector u € R’ (J = 3 for
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F1G 12. Posterior distribution for Example 1.4 for r = 2 in the case of different covariance for the prior distribution. We have
used mo = 0.4, v = 0.1 and true initial condition vo = 0.1.

Lorenz 63, J arbitrary for Lorenz’ 96) solves the equation

du

= + Au+ B(u,u) = f,  u(0) = ug, (1.37)

where there is A > 0 such that, for all w € R,

(Aw,w) > Nw|?, (B(w,w),w) =
Taking the inner-product with u shows that

Ld

S Sul? + Af? < (f,0).

If f is constant in time then this inequality may be used to show that (1.19) holds:

1d, 5 1., A o
S u? < —|f)? = Zul?.
s = ol 3l

Integrating this inequality gives the existence of an absoring set and hence leads to the existence of a
global attractor; see [Tem97] or Chapter 2 of [SH96], for example.

e Section 1.3 contains the formulation of Data Assimilation as a fully nonlinear and non-Gaussian problem
in Bayesian statistics. This formulation is not yet the basis of practical algorithms in the geophysical
systems such as weather forecasting. This is because global weather forecast models involve n = O(10)
unknowns, and incorporate m = O(10°) data points daily; sampling the posterior on R" given data
in R™ in an online fashion, useable for forecasting, is beyond current algorithmic and computational
capability. However the fully Bayesian perspective provides a fundamental mathematical underpinning
of the subject, from which other more tractable approaches can be systematically derived. See [Stul0]
for discussion of the Bayesian approach to inverse problems. Historically, data assimilation has not
evolved from this Bayesian perspective, but has rather evolved out of the control theory perspective.
This perspective is summarized well in the book [Jaz70]. However, the importance of the Bayesian
perspective is increasingly being recognized in the applied communities. In addition to providing a
starting point from which to derive approximate algorithms, it also provides a gold standard against
which other more ad hoc algorithms can be benchmarked; this use of Bayesian methodology was

suggested in [LS12] in the context of meteorology (see discussion that follows), and then employed in
[ILS13] in the context of subsurface inverse problems arising in geophysics.

24



20

—prior
15
10
5l
% 1 % 0.2 0.4 0.6 0.8 1

®) l(vo;y) r=4,J =5

FiG 13. Posterior distribution for Example 1.4 for r = 4. We have used Co = 0.01, mg = 0.5, v = 0.2 and true initial condition
vo = 0.3.

e Section 1.4 describes the filtering, or sequential, approach to data assimilation, within the fully Bayesian
framework. For low dimensional systems the use of particle filters, which may be shown to rigorously
approximate the required filtering distribution as it evolves in discrete time, has been enormously
succesful; see [DGO1] for an overview. Unfortunately, these filters can behave poorly in high dimen-
sions [BLB08, BBL08, SBBA0S]. Whilst there is ongoing work to overcome these problems with high-
dimensional particle filtering, see [BCJ11, vL10a] for example, this work has yet to impact practical
data assimilation in, for example, operational weather forecasting. For this reason the ad hoc filters,
such as 3DVAR, Extended Kalman Filter and Ensemble Kalman Filter, described in Chapter 3, are of
great practical importance. Their analysis is hence an important challenge for applied mathematicians.

e Section 1.6 Data assimilation may be viewed as an inverse problem to determine the signal from the
observations. Inverse problems in differential equations are often ill-posed when viewed from a classical
non-probabilistic perspective. One reason for this is that the data may not be informative about the
whole signal so that many solutions are possible. However taking the Bayesian viewpoint, in which the
many solutions are all given a probability, allows for well-posedness to be established. This idea is used
for data assimilation problems arising in fluid mechanics in [CDRS09], for inverse problems arising in
subsurface geophysics in [DS11, DHS12] and described more generally in [Stul0]. Well-posedness with
respect to changes in the data is of importance in its own right, but also more generally because it
underpins other stability results which can be used to control perturbations. In particular the effect of
numerical approximation on integration of the forward model can be understood in terms of its effect
on the posterior distribution; see [CDS10].

e Section 1.7 The subject of posterior consistency is central to the theory of statistics in general [VdV00],
and within Bayesian statistics in particular [Ber85, BS94, GGR99]. Assessing the quality of data
assimilation algorithms is typically performed in the “signal estimation” framework using identical
twin experiments in which the data is generated from the same model used to estimate the signal;
see [1J07] and the references therein. The idea of assessing “Bayesian quality” has only recently been
used within the data assimilation literature; see [LS12] where this approach is taken for the Navier-
Stokes inverse problem formulated in [CDRS09]. The evaluation of algorithms by means of forecast
skill is enormously influential in the field of numerical weather prediction and drives a great deal of
algorithmic selection. The use of information theory to understand the effects of model error, and to
evaluate filter performance, is introduced in [MGH12] and [MB13] respectively.
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2. Discrete Time: Smoothing Algorithms

The formulation of the data assimilation problem described in the previous chapter is probabilistic, and its
computational resolution requires the probing of a posterior probability distribution on signal given data.
This probability distribution is on the signal sequence {Uj}}]:o when the underlying dynamics is stochastic
and given by (1.1); the posterior is specified in Theorem 1.8 and is proportional to exp(—l(v;y)) given
by (1.27). On the other hand, if the underlying dynamics is deterministic and given by (1.3), then the
probability distribution is on the initial condition vy only; it is given in Theorem 1.9 and is proportional to
exp(—lo(vo; y)), with Iy given by (1.28). Generically, in this chapter, we refer to the unknown variable as u,
denoting v in the case of stochastic dynamics or vy in the case of deterministic dynamics.

In general the probability distributions of interest cannot be described by a finite set of parameters,
except in a few simple situations such as the Gaussian scenario where the mean and covariance determine
the distribution in its entirety. When the probability distributions cannot be described by a finite set of
parameters, an expedient computational approach is through the idea of Monte Carlo sampling. The
basic idea is to approximate a measure v by a set of N samples {w"},cz+ drawn, or approximately drawn,
from v to obtain the measure vV ~ v given by:

1 N
N _ — n. 2.1

If the w™ are exact draws from v then the resulting approximation vV converges to the true measure v as N —

oc. 3 For example if w = {v;} 5]:0 is governed by the probability distribution g defined by the unconditioned
dynamics (1.1), and with pdf determined by (1.25), then exact samples are easily to generate, simply by
running the dynamics model forward in discrete time. However for the complex probability measures of
interest here, where the dynamics is conditioned on data, exact samples are typically not possible and so
instead we use the idea of Monte Carlo Markov Chain (MCMC ) methods which provide a methodology
for generating approximate samples.

In section 2.1 we provide some background concerning MCMC ) methods, and in particular, the Metropolis-
Hastings variant of MCMC , and show how they can be used to explore the posterior distribution. It can be
very difficult to sample the probability distributions interest accurately, because of the two problems of high
dimension and sensitive dependence on initial conditions. Whilst we do not claim to introduce the optimal
algorithms to deal with these issues, we do discuss such issues in relation to the samplers we introduce, and
we provide references to the active research ongoing in this area. Furthermore, although sampling of the
posterior distribution may be computationally infeasible in many situations, where possible, it provides an
important benchmark solution, enabling other algorithms to be compared against a “gold standard.”

However, because sampling the posterior distribution can be prohibitively expensive, a widely used com-
putational methodology is simply to find the point which maximizes the probability, using techniques from
optimization. These are the variational methods, also known as 4ADVAR. We introduce this approach to
the problem in section 2.2. In section 2.3 we provide numerical illustrations which showcase the MCMC and
variational methods. The section concludes with bibliographic notes in 2.4.

2.1. Markov Chain-Monte Carlo Methods

In the case of stochastic dynamcs, equation (1.1), the posterior distribution of interest is the measure p on
RN, N = n|Jy|, with density P(v|y) given in Theorem 1.8; in the case of deterministic dynamics, equation
(1.3), it is the measure g on R™ with density P(vg|y) given in Theorem 1.9. In this section we describe the
idea of Markov Chain-Monte Carlo (MCMC ) methods for exploring such probability distributions.

We will start by describing the Metropolis-Hastings methodology for creating a Markov chain which is
invariant for a general measure p on R’ with pdf p. We then describe applications of this method to the
problem of noise-free dynamics and noisy dynamics respectively. When describing the generic Metropolis-
Hastings methodology we will use u (with indices) to denote the state of the Markov chain and w (with

3Indeed we prove such a result in Lemma 3.7 in the context of the particle filter.
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indices) the proposed moves. Thus the current state u and proposed state w live in the space where signal
sequences v lie, in the case of stochastic dynamics, and in the space where initial conditions vg lie, in the
case of deterministic dynamics.

2.1.1. Metropolis-Hastings Methods

We are given a probability density function p : R — R*, with f p(u)du = 1. Now consider a Markov

transition kernel ¢ : R x RY — Rt with the property that J q(u,w)dw =1 for every u € R?. In this section

we use an expedient abuse of notation by writing, for fixed u, the function ¢(u,w) to denote a pdf and,

simultaneously, a probability measure ¢(u,dw). We create a Markov chain {u(k)}keN which is invariant for
p as follows. Define

P

alu,w) =1A (a)g(w. ) (2.2)

The algorithm is:

1. Set k = 0 and choose u(®) e R¢.

k—k+1.

Draw w®) ~ g(u*=1 ).

Set u®) = w®) with probability a(u*~—1, w®), u*) = 4*=1) otherwise.
Go to step 2.

Ol

At each step key in the algorithm there are two sources or randomness: that required for drawing w(®*)
in step 3; and that required for accepting or rejecting w*) as the next u(®) in step 4. These two sources
of randomness are chosen to be independent of one another. Furthermore, all the randomness at discrete
algorithmic time & is independent of randomness at preceding discrete algorithmic times, conditional on
u*=1. Thus the whole procedure gives a Markov chain. If z = {z(j)}jeN is an i.i.d. sequence of U[0,1]
random variables then we may write the algorithm as follows:

wF ~ q(u(k_l), !

ulF) = w(k)ﬂ(z(j) < CL(u(kfl)’w(k))) + u(kfl)H(Z(J’) > a(u(kfl)’w(k)))_
Here I denotes the indicator function of a set. We let p : R x R¥ — RT denote the transition kernel of the
resulting Markov chain, and we let p¥ denote the transition kernel over k steps. Thus p*(u, A) = P(u(k) €

Alu® = v). Similarly as above, for fixed u, p*(u,dw) notes a probability measure on R with density
p¥(u,w). The resulting algorithm is known as a Metropolis-Hastings MCMC algorithm.

Remark 2.1. The following two observations are central to Metropolis-Hastings MCMC methods.
o The construction of Metropolis-Hastings MCMC methods is designed to ensure detailed balance:

pw)p(u, w) = p(w)p(w, u). (2.3)

Once this condition is obtained it follows trivially that measure p with density p is invariant since,
integrating over u, we obtain

[ ptwptu,widy = [ ptwlpw,udu
= plw) [ plw. wi

= p(w).

This means that if the Markov chains is distributed according to measure with density p initially then it
will be distributed according to the same measure at the next step, and hence for all algorithmic time.

e Note that, in order to implement Metropolis-Hastings MCMC methods, it is not necessary to know the
normalisation constants for p(-) and q(u,-) since only their ratios appear in a.
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The Metropolis-Hastings algorithm defined above satisfies the following, which requires definition of TV
distance given in section 1.6:

Theorem 2.2. If u®) ~ u with Lebesque density p, then u®) ~ p for all k € Zt. Thus, if the Markov chain
is ergodic, then for any bounded continuous ¢ : R — R,

K

1 a.s,

w2 e(u) =5 Ero(u)
k=1

for p a.e. initial condition u(9). In particular, if there is probability measure with pdf p on RY and ¢ > 0 such
that, for all u € R and all Borel sets A C RY, p(u, A) > ep(A) then, for all u € RY,

dTV(pk(uv ')7”) < 2(1 - 5)k' (24)

Furthermore, there is then a C > 0 such that
1 X
1
=3 plu®) = Bro(e) + Cé K (2.5)
k=1

where Ex converges weakly to N(0,1) as K — oo.

We now describe some exemplars of Metropolis-Hastings methods tailored to the data assimilation prob-
lem. These are not to be taken as optimal MCMC methods for data assimilation, but rather as examples
of how to construct proposal distributions g(u,-) for Metropolis-Hastings methods in the context of data
assimilation; in any given application the proposal distribution plays a central role in the efficiency of the
MCMC method and tailoring it to the specifics of the problem can have significant impact on efficiency of
the MCMC method.

2.1.2. Deterministic Dynamics

In the case of deterministic dynamics (1.3), the measure of interest is a measure on the initial condition vy in
R™. Perhaps the simplest Metropolis-Hastings algorithm is the Random walk Metropolis sampler which
employs a Gaussian proposal, centred at the current state; we now illustrate this for the case of deterministic
dynamics. Recall that the measure of interest is v with pdf . Furthermore o o exp(—lo(vo;¥)) as given in
Theorem 1.9.

The Random walk Metropolis method proceeds as follows: given that we are at v(*~1) € R”, a current
sample from the posterior distribution on the initial condition, we propose

w®) = =) 4 g, (k=1)

where ((F=1) ~ N (0, Cprop) for some symmetric positive-definite proposal covariance Cpyop and small param-
eter # > 0; natural choices for this proposal covariance include the identity I or the prior covariance Cj.
Because of the symmetry of such a random walk proposal it follows that g(w,u) = ¢(u,w) and hence that
w
a(u,w) =1A olw)
o(u)
= 1 Aexp(lo(u; y) — lo(w; ).

Thus, in particular, the proposed move to w is accepted with probability one if the value of |y is decreased by
moving to w from the current state u. On the other hand, if |y increases then the proposed stated is accepted
only with some probability less than one. Recall that |y is the sum of the prior penalization (background)
and the model-data misfit functional:

2 J*ll N (+1) 2
+Z§’F 2<yj+1fh(\Il (Uo))‘ .

J=0
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The algorithm thus has a very natural interpretation in terms of the data assimilation problem. The algorithm
has two key tuning parameters: the proposal covariance Cyop and the scale parameter 3. The covariance
can encode any prior knowledge, or guesses, about the relative strength of correlations in the model; given
this the parameter 8 should be tuned to give an acceptance probability that is neither close to 0 not to 1.
Numerical results illustrating the method are given in section 2.3.

2.1.8. Stochastic Dynamics

We now apply the Metropolis-Hastings methodology to the data assimilation smoothing problem in the case
of the stochastic dynamics model (1.1). Thus the probability measure is on an entire signal sequence {v; }f:o
and not just on vp; hence it lives on RY, with N = n|Jo| = n(J +1). It is possible to apply the random walk
method to this situation, too, but we take the opportunity to introduce several different Metropolis-Hastings
methods, in order to highlight the flexibility of the methodology. Furthermore, it is also possible to take the
ideas behind the proposals introduced in this section and apply them in the case of deterministic dynamics.

In what follows recall the measures pg and p defined in section 1.3, with densities pg and p, representing
(respectively) the measure on sequences v generated by (1.1) and the same measure when conditioned on data
y from (1.2). We now construct two Markov chains {u(®)},cy which are invariant with respect to p. These
will both be Metropolis-Hastings methods and hence we need only specify the transition kernel ¢(u,w), and
identify the resulting acceptance probability a(u,w). The sequence {w(k)}kez+ will denote the proposals.
Independence Dynamics Sampler Here we choose the proposal w*), independently of the current state
w1 from the prior yo with density pg. Thus we are simply proposing independent draws from the
dynamical model (1.1), with no information from the data used in the proposal. Important in what follows
is the observation that

p(v)

po(v)
With the given definition of proposal we have that ¢(u,w) = po(w) and hence that

o exp(—®(v;y)). (2.6)

= 1 Aexp(®(u;y) — ®(w;y)).

The resulting MCMC method always accepts moves which decrease the model-data misfit functional ®(.;y)
given in (1.26); if this functional increases then the move is accepted with a probability less than one.

As we will see in the illustrations section 2.3 below, this method can be quite inefficient because of frequent
rejections. These rejections are caused by attempts to move far from the current state, and in particular to
proposed states which are based on the underlying stochastic dynamics, but not on the observed data. This
typically leads to increases in the model-data misfit functional ®(.;y). Even if data is not explicitly used in
constructing the proposal, then this effect can be ameliorated by making local proposals, which do not move
far from the current state. These are exemplified in the following MCMC algorithm.

The pCN Method. It is helpful in what follows to introduce the measure 1 with density mg found from
o and pg in the case where ¥ = 0. Thus

J—1
1 —1 2 1 1 2
mo(v) x exp ~5 Cy % (vo — mo)’ - Z 5|E 20j41| (2.7)
7=0
and hence Uy is a Gaussian measure, independent in each component v; for j = 0,---,J. We denote the
mean by m and covariance by C, noting that m = (mZ,07,-.. 07)T and that C is block diagonal with

first block Cy and the remainder all being 3. Thus 99 = N(m, C). The basic idea of this method is to make
proposals with the property that, if ¥ = 0 so that the dynamics is Gaussian and with no time correlation,
and if A~ = 0 so that the data is totally uninformative, then the proposal would be accepted with probability
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one. Making small incremental proposals of this type thereby incorporates the effects of ¥ # 0 and h # 0
through the accept-reject mechanism. We describe the details of how this works.

Recall the prior on the stochastic dynamics model with density po(v) o exp(—J(v)) given by (1.25). It
will be useful to rewrite my as follows:

mo(v) x exp(—J(v) + G(v)),
where = ,
G@o::§:<2jz%wayﬂ —<25w+hEéwwﬂ>>. (2.8)

We note that
p(v)
o(v)
Recall the Gaussian measure 99 = N(m, C) defined via its pdf in (2.7). The pCN method is a variant of
random walk type methods, based on the following proposal

o exp(—®(v;y) — G(v)). (2.9)

w® = m o (1= )8 (w7 —m) 4+ gl (2.10)

Be(0,1), [~ N(,0).

Here ¢(*~1) is assumed to be independent of v*~1). This proposal preserves Jg and would be accepted all the
time in the absence of data (h = 0), and if ¥ = 0. To see this preservation of 9y notice that if v*=1) ~ ¥,
then Ew®) = m and

E (w(k) - m) ® (w(k) - m) =(1-p)E (u(k_l) - m) ® (u(k_l) - m) + BPEMAY @ (D)

=(1-p%)C+pC
=C,

where C' is the covariance under 9. This shows that the proposal preserves 9y and, in fact that the resulting
proposal satisfies detailed balance with respect to measure ¥y with density g:

o (w)q(w, u)

ro(wg(ww) 211)

thus the Markov chain )
u® =m 4+ (1-32)? (u(k—l) _ m) + Bk

has ¥y as an invariant measure. By use of (2.11) and (2.9) we deduce that the acceptance probability for
this method is

Recall that the proposal preserves the underlying Gaussian structure of the stochastic dynamics model; the
accept-reject mechanism then introduces non-Gaussianity into the stochastic dynamics model, via G, and
introduces the effect of the data, via ®. By choosing £ small, so that w*) is close to v(*~1), we can make
a(v(k_l), w(k)) reasonably large and obtain a useable algorithm. This is illustrated in section 2.3.

Notice that, if ¥ = 0 as assumed to define the measure o, then the noise sequence {§;}52, is indentical
with the signal sequence {v;}32;. More generally, even if ¥ # 0, the noise sequence {{;}32;, together
with vg, uniquely determines the signal sequence {vj};”;o. This motivates a different formulation of the
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smoothing problem for stochastic dynamics where one views the noise sequence and initial condition as
the unknown, rather than the signal sequence itself. Here we study the implication of this perspective for
MCMC methodology, in the context of the pCN Method, leading to what we refer to as the pCN Dynamics
Sampler, because the proposal samples from the dynamics as in the Independence Dynamics Sampler, while
the step-size is controlled to ensure good acceptance probability as in the pCN Method.

To give details of this approach we notice that once vy and & := {&;};c(o,....s—1} are known then the
sequence {v;};ey, from (1.1) is determined and we formulate the smoothing problem in terms of u := (vo, §)
rather than in terms of {v;};ey,. The data as given in (1.2) can be concatenated and written as

y=G(u)+n

where y = (y1,---,ys) and n = (n1,---,ns) and G denotes the mapping from initial conditions vy and
random forces £ to the observation space. For simplicity we assume that the noise 7 is a Gaussian N(0,T").
Putting the prior ¥y, with Gaussian density specified in (2.7), on u = (v, ) and conditioning on y gives a
posterior y on u|y which has the Lebesgue density proportional to e~'(“¥%) with

% (y — G(u))

DN | =

l(u;y) =

where the first term comes from the likelihood P(y|u), which is non-Gaussian, and the second two terms come
from the prior ¥. Now using the pCN proposal (2.10) with v® replaced by u(?, one can see the acceptance
probability is now given by

ofuw) =1 Aexp (5[0 - ) = 5 [rH - g ).

2.2. Variational Methods

Sampling the posterior using MCMC methods can be prohibitively expensive. Furthermore, if the probability
is peaked at one, or a small number of places, then simply locating these peaks may be sufficient in an applied
context. This is the basis for variational methods which seek to maximize the posterior probability, thereby
locating such peaks. In this section we show how to characterize these peaks in the posterior probability,
leading to problems in the calculus of variations. In contrast to the previous section on MCMC methods
we do no attempt to overview the vast literature on optimization algorithms; references are given in the
bibliographic notes of section 2.4.

and are hence termed variational methods. In the atmospheric sciences they are called 4DVAR since
they incorporate data over three spatial dimensions and one temporal dimension, in order to estimate the
state. In Bayesian statistics the methods are called MAP estimators: maximum a posteriori estimators.
First we consider the case of stochastic dynamics.

Theorem 2.3. Consider the data assimilation problem for stochastic dynamics (1.1). The density p(v) =
P(v|y) on RN associated with the posterior probability p, is maximized where |(v;y) given in (1.27) is mini-
mized. Furthermore, if Bs(z) denotes a ball in RY of radius 6, centred at z, then if ¥, h are continuous,

P*(Bs(21))

lim BBy (o)) exp(l(z2;9) — (215 9))-

Proof. Since

p(dv) = — exp(—I(v;y))dv
= p(v)dv

NI =
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the first result is clear. For the second note that

B :% lv—z2|<s exp( — I(v3y))dv
1
- E [v—z|<8 (exp(7|(z; y)) + 6(5, U))dv

where e(d;v) — 0 as § — 0, uniformly for v € Bs(z). This is because I(-;y) inherits continuity from ¥(-) and
h(-). The result follows since |I(z;y)] is finite for every z € RV, O

Remark 2.4. The second statement in Theorem 2.3 may appear a little abstract. However, unlike the first
statement, it can be generalised to infinite dimensions, as is required in continuous time. We state it this for
precisely this reason.

In applications to meteorology the variational method just described is known as weak constraint
4DVAR, and we denote this as wADVAR in what follows. This generalizes the standard 4DVAR method
which may be derived in the limit ¥ — 0 so that the prior on the model dynamics (1.1) is deterministic, but
with a random initial condition, as in (1.3). In this case the appropriate minimization is of lo(vo;y) given
by (1.28). This has the advantage of being a lower dimensional minimization problem than weak constraint
4DVAR,; however it is often a harder minimization problem, especially when the dynamics is chaotic. The
following theorem may be proved similarly to Theorem 2.3.

Theorem 2.5. Consider the data assimilation problem for deterministic dynamics (1.3). The density p(vy) =
P(vgly) on R™ associated with the posterior probability v, is mazimized where lo(vo;y) given in (1.28) is
minimized. Furthermore, if Bs(z) denotes a ball in R™ of radius §, centred at z, then if U, h are continuous,

P"(Bs(21)) . :
51_{% m = eXp(|0(22, y) - |0(2’1,y))-

2.3. Illustrations

We describe a range of numerical experiments which illustrate the application of MCMC methods and
variational methods to the smoothing problems which arise in both deterministic and stochastic dynamics.

The first illustration concerns use of the Random walk Metropolis algorithm to study the smoothing
distribution for Example 1.4 in the case of determinstic dynamics where our aim is to find P(vg|y). Recall
Figure 13a which shows the true posterior pdf, found by plotting the formula given in Theorem 1.8. We
now approximate the true posterior pdf by the MCMC method, using the same parameters, namely my =
0.5,Cy = 0.01,v = 0.2 and vg = 0.3. In Figure 14 we compare the posterior pdf calculated by the Random
walk Metropolis method (denoted by pV, the histogram of the output of the Markov chain) with the true
posterior pdf p. The two distributions are almost indistinguishable when plotted together in Figure 14a; in
Figure 14b we plot their difference, which as we can see is small, relative to the true value.

We now turn to the use of MCMC methods to sample the smoothing pdf P(v|y) in the case of stochastic
dynamics (1.1), using both the independence dynamics sampler and the pCN method. Before describing
application of numerical methods we study the ergodicity of the independence dynamics sampler in a simple,
but illustrative, setting. For simplicity assume that the observation operator h is bounded so that, for all
u € RN, |h(u)| € hmax. Then

J—1
1 _1
O(usy) < D (07 7y + T2 h(u11)[2)
j=0

J—1
_1
<P E (Y i P+ Thia)
j=0

IN

P32 (152 + Th)
=: Pax-
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FiGc 14. Comparison of the posterior for Example 1.4 for r = 4 using Random walk metropolis and equation (1.28) directly as
in the second MATLAB program. We have used J =5 Cp = 0.01, mg = 0.5, v = 0.2 and true initial condition vo = 0.3, see also
p3.m in Section 4.2.1. We have used N = 10% samples from the MCMC' algorithm.

Since ® > 0 this shows that every proposed step is accepted with probability exceeding e~®=ax and hence

that, since proposals are made with the prior measure po describing the unobserved stochastic dynamics,
p(u, A) > e~ Pmax o (A).

Thus Theorem 2.2 applies and, in particular, (2.4) and (2.5) hold, with e = e~®max under these assumptions.
This positive result, also indicates the potential difficulties with the independence dynamics sampler. The
independence sampler relies on draws from the prior matching the data well. Where the data set is large
(J > 1) or the noise covariance small (|I'| < 1) this will happen infrequently and the MCMC method will
reject frequently and be inefficient. To illustrate this we consider application of the method to the Example
1.3, using the same parameters as in Figure 3; specifically we take o = 2.5 and ¥ = ¢ = 1. We now sample
the posterior distribution and then plot the resulting accept-reject ratio a for the independence dynamics
sampler, employing different values of noise I' and different sizes of the data set J. This is illustrated in
Figure 15.

In addition, in Figure 16, we plot the output, and the running average of the output, projected into the
first element of the vector v(*), the initial condition — remember that we are defining a Markov chain on
R7*! — for K = 10° steps. Figure 16a clearly exhibits the fact that there are many rejections caused by the
low average acceptance probability. Figure 16b shows that the running average has not converged after 10°
steps, indicating that the chains needs to be run for longer. If we run the Markov chain over K = 108 steps
then we do get convergence. This is illustrated in Figure 17. In Figure 17a we see that the running average
has converged to its limiting value when this many steps are used. In Figure 17b where we plot the marginal
probability distribution for the first element of v(*), calculated from this converged Markov chain.

In order to get faster convergence when sampling the posterior distribution we turn to application of
the pCN method. Unlike the independence dynamics sampler, this contains a tunable parameter which can
vary the size of the proposals. In particular, the possibility of making small moves, with resultant higher
acceptance probability, makes this a more flexible method than the independence dynamics sampler. In
Figure 18 we show application of the pCN sampler, again considering Example 1.3 for o = 2.5, ¥ = 02 = 1
and I' =42 = 1, with J = 10, the same parameters used in Figure 17.

We now turn to variational methods; recall Theorems 2.3 and 2.5 in the stochastic and deterministic cases
respectively. In Figure 19a we plot the MAP (4DVAR) estimator for our Example 1.4 for the case r = 2
choosing exactly the same parameters and data as for Figure 10a, J = 102. In this case the function lo(-;y)
is quadratic and has a unique global minimum. A straightforward minimization routine will easily find this:
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FIG 15. Accept-reject probability of the independence sampler for Example 1.3 for a = 2.5, % =02 =1 and T’ = ~? for different
values of v and J.

we employed standard MATLAB optimization software initialized at three different points. From all three
starting points chosen the algorithm finds the correct global minimizer.

In Figure 19b we plot the MAP (4DVAR) estimator for our Example 1.4 for the case » = 4 choosing
exactly the same parameters and data as for Figure 13. We again employ the MATLAB optimization routine
initialized at three different points. Now the behaviour is very different from that observed in the preceding
example. The value obtained for our MAP estimator depends crucially on the choice of initial condition in
our minimization procedure. In particular, of the choices of starting point presented, only when we start from
0.2 are we able to find the global minimum of ly(vo;y). By Theorem 2.5 this global minimum corresponds
to the maximum of the posterior distribution, we see that finding the MAP estimator is a difficult task for
this problem. Starting with the other two initial conditions displayed we converge to one of the many local
minima of lp(vp;y); these local minima are in fact regions of very low probability, as we can see in Figure
13a. This illustrates the care required when computing 4DVAR solutions in cases where the forward problem
exhibits sensitivity to initial conditions.

Figure 20 shows application of the w4DVAR method, or MAP estimator given by Theorem 2.3, in the
case of the Example 1.3 with parameters set at J = 5,7 = ¢ = 0.1. In contrast to the previous example, this
is no longer a one-dimensional minimization problem: we are minimzing |(v;y) given by (1.27) over v € RS,
given the data y € R®. The figure shows that there are at least 2 local minimizers for this problem, with
vy closer to the truth than v,, and with I(vy;y) considerably smaller that I(vs;y). However vy has a larger
basin of attraction for the optimization software used: many initial conditions lead to vy, while fewer lead to
v1. Furthermore, whilst be believe that vy is the global minimizer, it is difficult to state this with certainty,
even for this relatively low-dimensional model.

2.4. Bibliographic Notes

e Section 2.1. Monte Carlo Markov Chain methods have a long history, initiated through the 1953 paper
[MRTT53] and then generalized to an abstract formulation in the 1970 papr [Has70]. The subject is
overviewed from an algorithmic point of view in [Liu01]. Theorem 2.2 is contained in [MT93], and that
reference also contains many other converegence theorems for Markov chains; in particular we note
that it is often possible to increase substantially the class of functions ¢ to which the theorem applies
by means of Lyapunov function techniques, which control the tails of the probability distribution. The
specific forms of the pCN-MCMC methods which we introduce here has been chosen to be particularly
effective in high dimensions; see [CRSW13] for an overview, [BRSV08] for the introduction of pCN and
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F1G 16. Output and running average of the independence dynamics sampler after K = 10° steps, for Example 1.8 for o = 2.5,
S =02=1andT =+% =1, with J = 10, see also p4.m in Section 4.2.2.

other methods for sampling probability measures in infinite dimensions, in the context of conditioned
diffusions, and [CDS11a] for the application to a data assimilation problem.

The key point about pCN methods is that the proposal is reversible with respect to an underlying
Gaussian measure. If U # 0 then this Gaussian measure is far from the measure governing the actual
dynamics. In contrast this Gaussian measure is precisely the measure governing the noise and initial
condition, giving the pCN Dynamics Sampler a natural advantage. In particular, notice that the accep-
tance probability is now determined only by the model-data misfit for the pCN Dynamics Sampler, and
is not having to account for incorporation of the dynamics as it does in the original pCN method; this
typically improves the acceptance rate of the pCN Dynamical Sampler over the standard pCN method.
Therefore, this method may be preferable, particularly in the case of unstable dynamics. The pCN
Dynamics Sampler was introduced in [CDS11b] and further trialled in [HLS14]; it shows considerable
promise.

e Section 2.2 Variational Methods, known as 4DVAR in the metereology community, have the distinction,
when compared with the ad hoc non-Gaussian filters described in later sections, of being well-founded
statistically: they correspond to the maximum a posteriori estimator for the fully Bayesian posterior
distribution on model state given data. See [Zup97]| and the references therein for a discussion of the
applied context. See [CDRS09] for a more theoretical presentation. The European Centre for Medium-
Range Weather Forecasts (ECMWF) weather prediction code, which is based on 4DVAR, is the best
weather predictor, worldwide, according to a widely adopted metric by much the prediction skill of
forecasts is measured. The subject of algorithms for optimization is vast and we have not attempted
to cover it in these notes; the reader is directed to [NW99] for details.
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FIG 17. Running average and probability density of the first element of v(¥) for the independence dynamics sampler after
N = 108 steps, for Ezxample 1.3 for a =2.5, L =02 =1 and ' =42, with v = 1 and J = 10, see also p4.m in Section 4.2.2.

3. Discrete Time: Filtering Algorithms

In this chapter we describe various algorithms for the filtering problem. We start in section 3.1 with the
Kalman filter which provides an exact algorithm to determine the filtering distribution for linear Gaussian
problems; since the filtering distribution is Gaussian in this case, the algorithm comprises an iteration for
the mean and covariance at each time. In section 3.2 we show how the idea of Kalman filtering may be used
to combine dynamical model with data for nonlinear problems; in this case the posterior distribution is not
Gaussian, but the algorithms proceed by invoking a Gaussian ansatz in the analysis step of the filter. This
results in algorithms which do not provably approximate the true filtering distribution; in various forms they
are, however, robust to use in high dimension. In section 3.3 we introduce the particle filter methodology
which leads to provably accurate estimates of the true filtering distribution but which is, in its current forms,
poorly behaved in high dimensions.

3.1. Linear Gausstan Problems: The Kalman Filter

This algorithm provides a sequential method for updating the filtering distribution P(v;]Y;) from time j to
time j 4+ 1, when W and h are linear maps. In this case the filtering distribution is Gaussian and it can be
characterized entirely through the mean and covariance. We let

U(v) = Mv, h(v) = Hv (3.1)

for matrices M € R™", H € R™*". We assume that m < n and Rank(H) = m. We let (m;,C;) denote
the mean and covariance of v;|Y}, noting that this random variable is Gaussian for each j since all maps are

linear and all noise is Gaussian additive. We let (m;41, @H) denote the mean and covariance of v;11|Yj,
noting that this too is a Gaussian random variable. We now derive the map (m;, C;) — (m;y1,Cj41), using

the intermediate variables (741, 6j+1) so that we may compute the prediction and analysis steps separately.

Theorem 3.1. Assume that Cy, X > 0. Then C; > 0 for all j € Z" and

Cly = (MC;MT+%) + H'TT'H (3.2a)
Cihmjpr = (MCMT 4+ )" 'Mm; + H'T ;1. (3.2b)
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FIG 18. Running average and probability density of the first element of u¥) for the pCN sampler after N = 10° steps, for
Ezample 1.8 for a =2.5, L =02 =1 and ' =~2 = 1, with J = 10, see also p5.m in Section 4.2.3.

Proof. The prediction step is determined by (1.1) in the case ¥(-) = M
Vji+1 = MUj +§ja Ej ~ N(O, E)

From this it is clear that
E(vj+1]Y;) = E(Mo;]Y;) + E(§]Y;).

Since §; is independent of Y; we have
fr\LjJr]_ = Mmj. (33)

Similarly

E((vj+1 = Mjt1) @ (vj41 — M511)|Y;) = E(M(v; —my) @ M(v; —my)|YV;) +E(& @ &]Y;)
+E(M(v; —my) @ &|Y;) + E(& © M(v; —my)[Y;).

Again, since ¢; is independent of Y; and of v;, we have

Cin1 = ME((v; — m;) ® (v; — my)|V;)MT + %
=MC;MT +%. (3.4)

Now we consider the analysis step. By (1.30), which is just Bayes’ rule, and using Gaussianity, we have

1) -1 2 1,1 I S ~ 2
eXp(_§|Cj+1(v - mj+1)’ ) x eXP(‘g‘F 2 (Y1 — HU)’ - §’Cj+1(v - mj+1)| ) (3.5)
Equating quadratic terms in v gives R
i =Cr +HTT'H (3.6)
and equating linear terms in v gives
Crltmjpr = Cilymyen + HTT lyp (3.7)

Substituting the expressions (3.3) and (3.4) for (M1, CA'J»H) gives the desired result. It remains to verify that
C; >0 for all j € Z* so that the formal calculations above make sense. To this end we notice that, since 3
and C; > 0 (inductive hypothesis, true for j = 0), we have MC;MT +% > 0 and hence (MC;MT +%)~1 > 0.
Thus C;_:l > 0 and hence Cj;11 > 0. O
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F1G 19. Finding local minima of I(vo;y) for Examples 1.1 and 1.4. The values and the data used are the same as for Figures
10a and 13b. (o,%,0) denote three different initial conditions for the starting the minimization process. (—8, —2,8) for Ezample
1.1 and (0.05,0.2,0.4) for Ezample 1.4.

Corollary 3.2. Under the assumptions of Theorem 3.1, the formulae for the Kalman filter given there may
be rewritten as follows:

djy1 = yjp1 — Hp
Sj+1 = HajHHT + F
A T g-1
Kj+1 - Cj+1H Sj+1
mjy1 = Myr1 + Kjpidj

~

Cit1 = = Kj11H)Cjpa,
with (M1, Cy41) given in (3.3), (3.4).
Proof. By (3.6) we have
lel1 - (Jjjjl +HTT'H
and application of Lemma 3.4 below gives
Cjs1=Cj1 —Cj H'C + HC; ( HT)'HC 4
= (1= CaH™ (0 + HC;aHT) ™ H ) Gy

=(I—CH"S; H)Cj

= - Kj1H)Cja
as required. Then the identity (3.7) gives

A1 Tp-1
mjp1 = Cip1Cy My + Cin H Ty

i+
= (I = Kj H)mj + Cipn H' Ty (3.8)
Now note that, again by (3.6),
Cin(Ci+H'T'H) =1

38



4 (v, lv)=127
3t v, l(v)=4.92]
2r —truth i
1 y
0

-1

-2

-3

0 1 2 3 4 5

F1c 20. Weak constraint 4DVAR for J =5,y = o = 0.1, illustrating two local minimizers vi and va, see also p6.m in Section

4.2.4.

so that
Cip1tH'T'H =1 - C;11C7Y
=I1—-(I—-Kj;1H)
= j+1H.

Since H has rank m we deduce that
Cj+1HT1—‘71 = j+1-

Hence (3.8) gives
mjp1 = (I = Kjp1 H)mjr + Kjyj = My + Kjadja
as required. O

Remark 3.3. The key difference between the Kalman update formulae in Theorem 3.1 and in Corollary
3.2 is that, in the former matrix inversion takes place in the state space, with dimension n, whilst in the
latter matriz inversion takes place in the data space, with dimension m. In many applications m < n, as
the observed subspace dimension is much less than the state space dimension, and thus the formulation in
Corollary 3.2 is frequently employed in practice.

The following matrix identity was used to derive the formulation of the Kalman Filter in which inversion
takes place in the data space.

Lemma 3.4. Woodbury Matrix Identity Let A € RP*P U € RP*1 . C € R?*? and V € RI*P. If A and
C are positive then A+ UCYV is invertible and

-1
(A+UCV)t=A"1— A‘1U<C_1 n VA—lU) VAL

3.2. Approximate Gaussian Filters

Here we introduce a family of methods, based on invoking a Gaussian ansatz, which may be applied to non-
Gaussian problems. The update equation for the Kalman filter mean, (3.7), can be derived by minimizing
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the following model/data compromise functional, derived from (3.5),

1,1 1 4-1 ~

J(v) == §|F 2 (yj+1 — Ho) + §|Cj 2 (v —Mjg)]? (3.9)
Whilst the Kalman filter itself is restricted to linear, Gaussian problems, the formulation via minimization
generalizes to nonlinear problems. Noting that 7,411 = Mm,, and that ¥(-) = M-, h(-) = H-, we see that a
natural generalization of (3.9) to the nonlinear case is to minimize

1 1 1 ~_1
T() = 504 g1 — )P + 1G5 A (0 = ()P
and then to set

mj41 = argmin J(v).
v

For simplicity we consider the case where observations are linear and h(v) = Hwv leading to the update
algorithm m; — m; 4, defined by

1 _ 1 1 ~_1
J0) = 0 (i~ HOP + 2O (0 wm, )P
mjy1 = argmin J(v). (3.10)

By the arguments used in Corollary 3.2 we deduce the following update formulae:

mjr1 = (I = Kj 1 H)¥(m;) + Kj1y1 (3.11a)
Kjp1=CiHT S (3.11b)
Sj+1 = H@HHT +T (311(‘,)

The next three sections each correspond to algorithms derived in this way, namely by minimizing J(v), but
corresponding to different choices of the model covariance 6j+1. We sometimes refer to these three algorithms
collectively as approximate Gaussian filters. This is because they invoke a Gaussian approximation when
updating the estimate of the signal via (3.10). Specifically this update is the correct update for the mean
if the assumption that P(v;41]Y;) = N(\Il(mj),éjH) is invoked for the prediction step. In general the
approximation implied by this assumption will not be a good one and this can invalidate the statistical
accuracy of the resulting algorithms. However the resulting algorithms may still have desirable properties in
terms of signal estimation; we will demonstrate that this is indeed so.

3.2.1. 3DVAR

This algorithm is derived from (3.11) by simply fixing the model covariance éjH = C for all 7. Thus we
obtain

mj41 = (I — KH)\I’(TTLJ) + Kyj+1 (312&)

K=CH"S™', S=HCH" +T (3.12b)

We now describe two methodologies which generalize 3DVAR by employing model covariances which
evolve from step j to step j 4+ 1: the extended and ensemble Kalman filters. We present both methods in

basic form but conclude the section with some discussion of methods widely used in practice to improve their
practical performance.

3.2.2. Extended Kalman Filter

The idea of the extended Kalman filter (ExKF) is to propagate covariances according to the linearization of
(1.1), and propagate the mean, using (1.1). Thus we obtain, from modification of Corollary 3.2 and (3.3),
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m; = U(m;
Prediction AJH (m)
Cit1 = D¥(m;)C;DV(m;)" + X

Sj+1 :Haj+1HT+F
Kjp =CinH"S
mjr1 = (I — Kjp1H)mj1 + Kjp1y01

~

Cit1 = =K1 H)Cjpy

Analysis

3.2.8. Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) generalizes the idea of approximate Gaussian filters in a significant way:
rather than using the minimization procedure (3.10) to update a single estimate of the mean, it is used to
generate an ensemble of particles which all satisfy the model/data compromise inherent in the minimization;
the mean and covariance used in the minimization are estimated using this ensemble, thereby adding further
coupling to the particles, in addition to that introduced by the data.

The EnKF is executed in a variety of ways and we start by describing one of these, the perturbed
observation EnKF:

i)\](i)l = \IJ(’UJ(n))_‘_gJ(n)a n=1,.,N
Prediction § ;1 = & SN, 807,
~ N ~(n ~ ~(n ~
Civ1 = §7 Zn:1(”§+)1 - mj+1)(”y(‘+)1 — ;)"

Sjs1 =HC; HT +T

Kj1 =CjaHTSTY

Analysis (n) ~(n) (n)
vit = = Kj H)ojih + Ky
yh =yl

Here 17§") are i.i.d. draws from N(0,T) and §§") are i.i.d. draws from N(0,X). Perturbed observation refers
to the fact that each particle sees an observation perturbed by an independent draw from N(0,T"). This
procedure gives the Kalman Filter in the linear case in the limit of infinite ensemble. Even though the
algorithm is motivated through our general approximate Gaussian filters framework, notice that the ensemble
is not prescribed to be Gaussian. Indeed it evolves under the full nonlinear dynamics in the prediction step.
This fact, together with the fact that covariance matrices are not propagated explicitly, other than through

the empirical properties of the ensemble, has made the algorithm very appealing to practitioners.

3.2.4. Square Root Ensemble Kalman Filters

We now describe another popular variant of the EnKF. The idea of this variant is to define the analysis
step in such a way that an ensemble of particles is produced whose empirical covariance exactly satisfies the
Kalman identity

Cjt1 = - Kj11H)Cjpa (3.13)
which relates the covariances in the analysis step to those in the prediction step. This is done by mapping
the mean of the predicted ensemble according to the standard Kalman update, and introducing a linear
transformation of the differences between the particle positions and their mean to enforce (3.13). Doing so
eliminates a sampling error inherent in the perturbed observation approach. The resulting algorithm has the
following form:
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65»1)1 = \11(1;§")) +£§n), n=1.,N

st ~ _ 15N (0
Prediction ¢ mj1 = 5> 104,
~ 1 N ~(n) ~ ~(n) - T
Cit1i =353 Zn:l(vj+1 - my+1)(“j+1 — Mjt1)

Sjy1 = HC;  HT 4T
Kj1 =CjHTS7!

Analysis gt R
mijr1 = — KjpiH)mj + Kjpy41
o =mi G

~

Here the {(j(i)l NN_, are designed to have sample covariance Cj1 = (I — K11 H)Cj11. There are several ways
to do this and we now describe one of them, refered to as the ensemble transform Kalman filter (ETKF).

If we define

S 1 ~ . ~ ~
Xj+1 = |:’U(-£r)1 —Mj4+1,--- ,U(-IX% - mj+1:|
/N_ 1 J J

then 6j+1 = )?j+12;r+1. We now seek a transformation 741 so that, if X;; = )?j+1Tj§+1a then
Cis1 = Xjn X[ = (I = Kj1 H)Cjpa. (3.14)

Note that the X;;; (resp. the Xj+1) correspond to Cholesky factors of the matrices Cjq1 (resp. @-H)
respectively. We may now define the {¢ j(-i)l W by

X.H:;[gw el
TN T Db

We now demonstrate how to find an appropriate transformation 7;,. We assume that 7}, is symmetric
and positive-definite and the standard matrix square-root is employed. Choosing

Tjy1 = [IK + (H)A(jﬂ)TF_l(HXjH)Tl
we see that
XinXfn = XX, 1
= Aj_,_l {IK + (H)?j+1)TF_1(H)?j+1)} )?J‘T+1
= Aj+1 {IK - (H)A(jJrl)T [(H)A(jJrl)(HXjJrl)T + Frl (H)A(ﬁl)} )A(JT+1

~

= - Kj}1H)Cja

as required, where the transformation between the second and third lines is justified by Lemma 3.4. It is
important to ensure that 1, the vector of all ones, is an eigenvector of the transformation 7j4;, and hence

of T-%

j+1, so that the mean of the ensemble is preserved. This is guaranteed by Tj11 as defined.

3.2.5. Tuning Non-Gaussian Filters

In practical implementations, especially for high dimensional problems, the basic forms of the ExKF and

EnKF as described here are prone to poor behaviour. In Examples 3.12 and 3.13 we have already shown

the role of variance inflation for 3DVAR and this type of approach is also fruitfully used within ExKF

and EnKF. A basic version of variance inflation is to replace the estimate Cj4q in (3.11) by €21 4+ Cjiq;

doing so prevents @H from having a null-space and can be particularly important when the EnKF is used

in high dimensional systems where the number of ensemble members, IV, is always less than the dimension
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d of the state space. In this situation CA']»H necessarily has a null-space of dimension at least d — N. It can
also be important for the ExKF where the evolving dynamics can lead, asymptotically in j, to degenerate
Cj4+1 with non-trivial null-space. Notice also that this form a various inflation can be thought of as using
3DVAR-like covariance updates, in the directions not described by the ensemble covariance. This can be
beneficial in terms of the ideas underlying Theorem 3.10 where the key idea is that K close to the identity
can help ameliorate growth in the underlying dynamics. This may also be achieved by replacing the estimate
Cj+1 in (3.11) by (14 €%)Cj11. This is another commonly used inflation tactic; not, however, that it lacks
the benefit of rank correction.

Another methodology which is important for practical implementation of the EnKF is localization. This
is used to reduce unwanted correlations in C; between points which are separated by large distances in space.
The underlying assumption is that the correlation between points decays proportionally to their distance
from one another, and as such is increasingly corrupted by the sample error in ensemble methods. The sample
covariance is hence modified to remove correlations between points separated by large distances in space. A
typical convolution kernel to achieve this would be

pir. = exp{—i — k[*}.

Localization can have the further benefit of increasing rank, as for the first type of variance inflation described
above. If used in addition to inflation of the second type described above one accomplishes both rank
correction as well as stability, while eliminating assumed spurious correlations. It is worth noting that in
many systems which are not governed by PDE, or indeed even in those governed by PDE but in a spectral
representation 4, there are not such decay of correlations and localization may eliminate useful information.
In such a case rank correction is still desirable, but the first type of inflation may be the preferable approach
to accomplish this.

3.3. The Particle Filter

In this section we introduce an important class of filtering methods known as particle filters. In contrast
to the filters introduced in the preceding section, the particle filter can be proved to reproduce the true
posterior filtering distribution in the large particle limit and, as such, has a priveledged places amongst all
the filters introduced in this book. We will describe the method in its basic form — the bootstrap filter — and
then give a proof of convergence. It is important to appreciate that the form of particle filter introduced
here is far from state-of-the-art and that far more sophisticated versions are used in practical applications.
Nonetheless, despite this sophisticiation, particle filters do not perform well in applications such as those
arising in geophysical applications of data assimilation, because the data in those applications places very
strong constraints on particle locations, making efficient algorithms very hard to design. It is for this reason
that we have introduced particle filters after the approximate Gaussian filters introduced in the preceding
section. The filters in the preceding section tend to be more robust to data specifications. However they do
all rely on the invocation of ad hoc Gaussian assumptions in their derivation and hence do not provably
produce the correct posterior filtering distribution, notwithstanding their ability, in partially observed small
noise scenarios, to correctly identify the signal itself, as in Theorem 3.10. Because it can provably reproduce
the correct filtering distribution, the particle filter thus plays an important role, conceptually, even though
it is not, in current form, a practical algorithm in geophysical applications. With further innovations it may,
in time, form the basis for practical algorithms.

3.8.1. Approzimation by Dirac Measures

All probability measures which possess density with respect to Lebesgue measure can be approximated by a
finite convex combination of Dirac probability measures; an example of this is the Monte Carlo sampling
idea that we decribed at the start of Chapter 2, and also underlies the ensemble Kalman filter of 3.2.3. In

4In the case of spectral representation, one may expect similar effect by transforming the operator p into the given spectral
basis.
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practice the idea of approximation by a convex set of probability measures requires the determination of the
locations and weights associated with these Dirac measures. Particle filters are sequential algorithms which
use this idea to approximate the true filtering distribution P(v;|Y;).

Recall the prediction and analysis formulae from (1.29) and (1.30) which can be summarized as

Plojsal¥s) = | Ployalog) Pl 1Y), (3.150)
P(yj+1|vj+1)P(vj41]Y5)

P(vigq|Y; = J J J 17 3.15b

( J+1‘ J+1) P(yj+1|}/j) ( )

Now let u1; be the probability measure on R™ corresponding to the density P(v;|Y;) and fi;41 be the proba-
bility measure on R™ corresponding to the density P(v;4+1]Y;). Then we may write (3.15) as

i) = (Py)() = [ BClus)is () (3.16a)
dujr,  Plyjsalvi)
diij+1 (v P(y;+11Y;) (8.16)

The formula (3.16b) for the density of ;11 with respect to that of fi;1 has a straightforward interpreta-
tion: the righthand-side quantifies how to reweight expectations under fi;41 so that they become expectations
under ft;11. We write the update formulae this way because it makes sense in the absence of Lebesgue den-
sities; in particular we will want to apply it in situations where Dirac masses are used.

Particle filters proceed by finding an N-particle Dirac measure approximation of the form

N
Wi~ N;V = Z wgn)5v;n>. (3.17)
n=1

The approximate distribution is completely defined by particle positions vj(-n) and weights wj(-n) respectively.
Thus the objective of the method is to find an update rule for {uj(.”),wj(.”)},fy:l — {v](-i)l,w§1)1},]y:1. The
weights must sum one. This may be achieved an application of Bayesian probability, combined with judicious

approximation by Dirac measures.

3.3.2. Bootstrap Filter (Sequential Importance Resampling)
)

The simplest particle filter is as follows. First each particle v](n

particle @;i)l according to the Markov kernel P. This creates an approximation to fi;41 which we can think of
as a prior distribution. Secondly each new particle is re-weighted according to the desired distribution p;1
given by (3.16b); this corresponds to applying Bayes’ formula (1.24) to obtain the posterior distribution.
The required calculations are very straightforward because of the assumed form of the measures as sums of
Dirac’s, as we now explain.

Note from (3.16a) that, making the particle approximation (3.17) for p;,

is updated by proposing a new candidate

N
()~ > wiB(), (3.18)
n=1

This distribution is not, in general, of Dirac form (although it will be in the case of deterministic dynamics).

However we may make a Dirac approximation as follows: if we choose @@1 as a sample from P(ﬁ(n)7 -) the

J
Markov kernel with transition density P(ﬁ§i)1 |ﬁ§-")) then a natural approximation to [i;41 is the measure

N
iy = Z w§")5a§1>1, (3.19)
n=1
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We now apply Bayes’ formula in the form (3.16b). Using an approximation proportional to (3.19) for fz;1
we obtain

N
,[,Lj+1 =~ /,[é\il = Z wj(i)l(sﬁ;j_)l . (320)
n=1
where
N
n) ~(n) ~(n) ~(n n) ~(n
w§‘+1 = Wit (Z “’j+1> ’ wy('+)1 = “’§ P (yj+1|”j+)1> : (3.21)
n=1

The first equation in the preceding is required for normalization.

We could simply set vj(i)l = Aj(i)l at this point and the algorithm resulting from doing so is the basic form
of sequential importance sampling. However, in practice, some weights become very small and for this reason
it is desirable to add an additional resampling step where the {vﬁ)l} are drawn from (3.20) and then all
given equal weights, yielding the sequential importance re-sampling algorithm. Because the initial measure
P(vp) is not in Dirac form it is convenient to place this resampling step at the start of each iteration, rather
than at the end as we have presented here, as this naturally introduces a particle approximation of the initial
measure. This reordering makes no difference to the iteration we have described and doing so results in the
following algorithm, where Y denotes the empty vector (no observations at the start):

1. Set j = 0 and u (vo)dve = P(vo)dvo.
(n) N o _
2. Drawvj ~py,n=1,...,N.
3. Set w§") =1/N,n=1,...,N.
4. Draw ﬁ](:ﬂ ~ ]P’(vj(-n)\-).
5. Define wﬁ-ﬁ?l by (3.21)and ,ué\j_l by (3.20).
6. j+1—=37.
7. Go to step 2.

This algorithm is conceptually intuitive, proposing that each particle moves according to the dynamics of
the underlying model itself, and is then reweighted according to the likelihood of the proposed particle, i.e.
according to the data. The resulting method is termed the bootstrap filter. We will comment on important
improvements to this basic algorithm in the the following section and in the bibliographic notes. Here we
prove convergence of this basic method, as the number of particles goes to infinity, thereby demonstrating
the potential power of the bootstrap filter and more sophisticated variants on it.

It is instructive to write the algorithm in the following form. We build the algorithm from the following
three operations on measures: P corresponding to moving a point currently at v according to the Markov
kernel P(-|v) describing the dynamics given by (1.1a); SV denotes sampling N i.i.d. points from a measure
and approximating that measure by an equally weighted sum of Dirac’s at the sample points; and C; denotes
the application of Bayes’ formula with likelihood proportional to

9i (1) = P(yj1l)-
The preceding algorithm may be written as
iy = CiSNPulY. (3.22)

There is a slight trickery here in writing application of the sampling S after application of P, but some
reflection shows that this is well-justified: applying P followed by SV can be shown, by first conditioning
on the initial point and sampling with respect to P, and then sampling over the distribution of the initial
point, to be the algorithm as defined. The true filtering distribution simply satisfies the iteration

pi+1 = CjPu;. (3.23)

Thus analyzing the particle filter requires estimation of the error induced by application of S (the resampling
error) together with estimation of the rate of accumulation of this error in time.
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The operators C;, P and SY map the space P(R™) of probability measures on R” into itself according to
the following:

(Co () = P (3.242)
= i (

(Pp)(dv) = / n}P’(v',dv),u(dv’), (3.24D)

(SN 1) Z‘Sv“‘) (dv), o™ ~p iid. (3.24¢)

Let p = p, denote, for each w, an element of P(R™). If we then assume that w is a random variable,
and let E“ denote expectation over w, then we may define a "root mean square” distance d(-, -) between two
random probability measures pu,, v, as follows:

d(p,v) = sup sy VE“ u(f) — v(f)%,

where we have used the convention that p(f fRn u(dv) for measurable f : R® — R, and similar for
v. This distance does indeed generate a metrlc and, in partlcular7 satisfies the triangle inequality.

Theorem 3.5. We assume in the following that there exists k € (0,1] such that for allv € R™ and j € N

Then

Proof. The desired result follows in a straightforward way from the following three facts, whose proof we
postpone to three lemmas at the end of the section:

IN

sup  d(S™N p, p) (3.25a)

1
pEP(R™) VN’
d(Pv, Pu) < d(v, p) (3.25Db)
2

<
d(Civ,Cip) < 25 2d(v, ). (3.25¢)

By the triangle inequality we have, for V Pu] ,
(s ) = d(clsNPuﬁ-V .C3Puy)
<2k (d(ﬂj ;HJ)+d(SN jN’ JN))

< 2H_2(d(u§v,ﬂj) + Tlﬁ)

Iterating, after noting that ul = g, gives the desired result. O

A

Remarks 3.6. This important theorem shows that the particle filter actually reproduces the true filtering
distribution, in the large particle limit. We make some comments about this.

o This theorem shows that, at any fizved J, the filtering distribution i is well-approzrimated by the boot-
strap filtering distribution ,uj»v in the sense that, as the number of particles N — oo, the approximating
measure converges to the true measure. However, since k < 1, the number of particles required to
decrease the upper bound on the error beneath a specified tolerance grows with J.
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e In many applications the likelihoods g; may not be bounded from above or below, uniformly in j, and
more refined analysis is required.

o If the Markov kernel P is ergodic then it is possible to obtain bounds which are uniform in J.

o Considering the case of deterministic dynamics shows just how difficult it may be to make the theo-
rem applicable in practice: if the dynamics is deterministic then the original set of samples from po,
{v(()n) N_| give rise to a set of particles U](-n) = \Il(j)(v(()n)); in other words the particle positions are unaf-
fected by the data. This is clearly a highly undesirable situation, in general, since there is no reason at
all why the pushforward under the dynamics of the initial measure pg should have substantial overlap

with the filtering distribution. This example motivates the improved proposals of the next section.

Before describing improvements to the basic particle filter, we prove the three lemmas which underly the
convergence proof.

Lemma 3.7. The sampling operator satisfies

1
sup  d(SVp,p) < —.
HEP(R™) \4

Proof. Let v be an element of P(R") and {v™ 1} ii.d. with v(") ~ v. Then

/)

=

1
R
J

WE

SMu(f)

and, defining f = f — v(f), we deduce that

It is straightforward to see that

Furthermore, for |f] <1,

It follows that, for |f| <1,
w N 2 1 O (k) 2 1
E ’V(f)_s V(f)’ :725 E’f(v )‘ SN-

Since the result is independent of v we may take the supremum over all probability measures and obtain the
desired result. O

Lemma 3.8. Since P is a Markov kernel we have
d(Pv, Pp) < d(v, ).
Proof. Define
o) = [ B} (o),

that is the expected value of f under one-step of the Markov chain given by (1.1a), started from v’. Clearly

sup |q(v)| < sup | f(v)].
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It also follows that
|Pv(f) — PV (f)] = v(q) — V().

Thus
/ w / 2 %
d(Pv, PV) = sup (E*|Pu(f) - PV'(f)?)
[fI<1
1
< sup (E*lv(g) — V' (a)?)
lgl<1
=d(v,v")
as required. O

Lemma 3.9. Under the Assumptions of Theorem 3.5 we have
d(Cjv,Cyp) < 2k~ 2d(v, ).
Proof. Notice that for |f|. < 0o we can rewrite

() = (Cp)(f) —((fj)) - ’jf{gg)) (3.26a)

_v(fgi)  w(fg) | nlfgy)  plfg))
g vlg) | vlg) ) (3.26b)
_il/li 2) — K . ,LL(ng) "<‘.’71
Tulgy " T g )

(1(rg;) — v(Kg;)]. (3.26¢)

Now notice that v(g;) ™! < s~ ! and that u(fg;)/u(g;) < 1 since the expression corresponds to an expectation
with respect to measure found from p by reweighting with likelihood proportional to g;. Thus

[(Ci)(f) = (Cim)(H)] < 672 v(Kfg;) — nlifgg) + 572w (rg;) — nlrg))l-

Since |kg;| < 1 it follows that

E¥|(Civ)(f) = (Cim) ()P < 4r™" Sap. E*u(f) = u(f)?

and the desired result follows. O

3.83.8. Improved Proposals

In the particle filter described in the previous section we propose according to underlying unobserved dy-
namics, and then apply Bayes’ formula to incorporate the data. The final point in Remarks 3.6 demonstrates
that this may result in a very poor set of particles with which to approximate the filtering distribution.
Cleverer proposals, which use the data, can lead to improved performance and we outline this methodology
here.

Instead of moving the particles {v§")}5:1 according to the Markov kernel P, we use a Markov kernel @);

with density Q(vj+1]v;,Y;+1). The weights wﬁ)l are found, as before, by applying Bayes’ formula for each

particle, and then weighting appropriately; the result is found from (3.21) by reweighting according to the
ratio of the kernel of the true dynamics to the kernel of the proposed dynamics, which gives

500\ (500 ()
20 o (a0 ) P (50107 .

J+1 T ~(n n
Q (”j('+)1\”§ )7Yj+1)

(3.27)

Normalization then requires that we apply (3.21) as before. This results in the following algorithm:
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1. Set j = 0 and ud (vo)dve = P(vg)dvo.
() N o _
2. Drawvj ~pi,n=1,...,N.
3. Set w\™ =1/N,n=1,...,N.
4. Draw 0\ ~ Q(-[0\"V), Y;11).
5. Define w§:L_)1 by (3.27) and PV (vj11]Yj41) by (3.20).
6. j+1—].
7. Go to step 2.

The so-called optimal proposal is found by choosing
. (") y. =P (v , (n)
Q Ug+1|vj y Lj+1 ) = UJ+1‘yj+1?vj

which results in
@§1)1 = w;n)P (yj+1|’l)§n)) . (3.28)

The above can be seen by observing that the definition of conditional probability gives

P(yj+1|@(‘i)1> P (351)1|U§")) = P (g1, 00 01"

3.29
= P @§1)1\yj+1»v§7l) P (Z/j+1|%('n)> : (329)
Substituting the optimal proposal into (3.27) then immediately gives (3.28).

This small difference may seem trivial at a glance, and at a large cost of evaluating the normalizing
constant. However, in the case of nonlinear Gaussian Markov models as we study here, the distribution and
the weights are given in closed form. If the dynamics is highly nonlinear or the model noise is much larger
than the observational noise then the variance of the weights for the optimal proposal may be much smaller
than for the standard proposal. The corresponding particle filter is also more likely to track rare events, such
as a transition between wells in a double-well potential. For deterministic dynamics the optimal proposal
reduces to the standard proposal.

3.4. Stability Analyses

An important question concerning filters in general is their behaviour when iterated over long times and,
in particular, their ability to recover the true signal underlying the data if iterated for long enough. In this
section we present some basic stability results for filters to illustrate the key issue which affects the ability
of filters to accurately recover the signal when iterated for long enough. This key idea is that the data must
be sufficiently rich to stabilize any inherent instabilities within the underlying dynamical model (1.1); in
rough terms it is necessary to observe only the unstable directions as the dynamics of the model itself will
enable recovery of the true signal within the stable directions. We illustrate this idea first, in subsection
3.4.1, for the explicitly solvable case of the Kalman filter in one dimension, and then, in subsection 3.4.2, for
the 3DVAR method.

3.4.1. The Kalman Filter in One Dimension

We consider the case of one dimensional dynamics with

while we will also assume that
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With these definitions equations (3.2a,b) become

71 71 + ! (3.30a)
- =, .30a
Cjt+1 0'2 + /\26]‘ ’}/2
mMjt1 Amy; 1
_ o 3.30b
Cj+1 0?2 + N\¢; + 2 Vit ( )

which, after some algebraic manipulations, give

ci+1 = g(A¢), (3.31a)
Mip1 = (1 - c;j) Am; + cﬁy—;lyﬂl, (3.31b)

where we have defined (Mt 0?)
g(c) := T ot (3.32)

We wish to study the behaviour of the Kalman filter as j — oo, i.e. when more and more data points
are assimilated into the model. Note that the covariance evolves independently of the data {y;};ez+ and
satisfies an autonomous dynamical system; we first study the asymptotic properties of this map. The fixed
points ¢* of (3.31a) satisfy

oo Ve 07

_ 2 3.33
Y2+ N2 4 02’ (3.33)
and thus solve the quadratic equation
)\(C*)2 + (,)/2(1 _ )\2) + 02)6* _ 7202'
We see that, provided Ayo # 0, one root is positive and one negative. The roots are given by
—(~2 2 A2)2) + 2 2 _ ~A2)2)2 L 4)\2~252
o= (P +0% = *N) £ V(7 + 07 = °N°)? + dWP0> (3.34)

2X2

We observe that the update formula for the covariance ensures that, provided cg > 0 then ¢; > 0 for all
j € ZT. It also demonstrates that ¢; < 42 for all j € ZT. Thus we fix our attention on non-negative
covariances. We will now study the stability of the non-negative fixed points.
We first start with the case o = 0, which corresponds to no model error. In this case we obtain
* ’72(>‘2 — 1)

* —
C+—O, c_ = )\2 )

and
g(e) =X g(ct) =272
which implies that when A\? < 1, ¢} is an asymptotically stable fixed point, while when A2 > 1, ¢ is an

asymptotically stable fixed point. When |A] = 1 the two roots are coincident at the origin and neutrally
stable. In fact for the case o = 0 it is possible to solve (3.30a) to obtain for A # 1

1 /1)1 1
;i \AN2) ¢ A2
This explicit formula shows that the fixed point ¢} (resp. ¢*) is globally asymptotically stable, and expo-
nentially attracting on R, when A% < 1 (resp. A2 > 1). Notice also that ¢* = O(?) so that when A\? > 1,

the asymptotic variance of the filter scales as the observational noise variance. Furthermore, when \? = 1
we may solve (3.30a) to obtain

(;1):1] . (3.35)
)\2

1 1

G o P
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showing that ¢* = ¢f = 0 is globally asymptotically stable on R*, but is only algebraically attracting.

We now study the stability of the fixed points ¢} and ¢* in the case of o2 > 0 corresponding to the case
of the imperfect model scenario. To this end we prove some bounds on ¢'(c¢*) that will be also be useful
when we study the behaviour of the error between the true signal and the estimated mean; here, and in what
follows in the remainder of this example, prime denotes differentiation with respect to ¢. We start by noting

that
4

A2 i _
g(C) =7 (72 4 )\20+ 0_2)7 (336)

and so -
g'(c) = ! -
(72 4+ A2c+ 02)2
Using the fact that ¢* is a fixed point of (3.31a), together with equation (3.36), we obtain

*\2 S\ 2
) = L e = 2 (1—02) ~
M+ %) v

We can now see that from the first equation we obtain the following two bounds, since o2 > 0:
g(c) <A, for AeR, and g¢'(c¢*) <1, for N =1,
while from the second equality and the fact that, since ¢* satisfies (3.36), ¢* < 42 we obtain
g (c*) < M\

when ¢* > 0. We thus conclude that when o > 0 the fixed point ¢’ of (3.31a) is always stable independently
of the value of the parameter .

We will now study the behaviour of the mean of the Kalman filter in the case of one dimensional dynamics.
We assume that the data {y;};en is generated from a true signal {v;}jew governed by the equation

f
U1 = AV

with the addition of noise {n;};en which is a drawn from i.i.d. sequences with variance v2. From (3.31b) we
have

Cj+1 Cjt1
M1 = ( - f;;) Amj + ;—J;()\v;f + nj+1)

while we also have

P Cj+1) b Gty
v, =(1- Av! + AU
Jj+1 ( 72 J 72 J
Defining the error e; = m; — v;[ between the estimated mean and the true signal and subtracting the previous
two equations we obtain

Cj Cj
Cjt1 = ( - i;l) Aej + %1%‘% (3.37)

Having obtained (3.37) it is interesting to ask what happens to the error in the case when more and more
data are assimilated in the model, i. e j — oco. To address this question it is useful to observe that since
7j+1 is a Gaussian random variable then e; is also Gaussian. Thus it suffices to characterise the behaviour
of Ee; and Ee? to obtain information about the long time behaviour of the error. By taking expectations in
(3.37) and using the fact that 1,11 has zero mean, and it is conditionally independent of e;, we obtain

Eejir = A (1 - Cigl) Ee;, (3.38)

while by taking the square of (3.37), and using the fact that ]E(njz-_H) =72 we have

2 2
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Ee2,, = A\ (1 —~ CJ“) Ee? + 211, (3.39)



Equation (3.38) can be solved to obtain

Ee; = M [ﬁ (1 - c’;l)} Eeo, (3.40)

=0

while in a similar way we obtain for the solution of (3.39)

N s N c2
Ee? = \% [H < C’“) Ee2 + Z { [ 11 ( ’;)] A%”C;} +-L (3.41)
1=0 k=i+1 v v 7

i=0
Using the fact derived earlier, that ¢; < 72,7 > 1, we see that in the case [M\? < 1

I\l (1 - jg) <A<l Vi1 (3.42)

Furthermore, in the case where |A\| > 1 and 02 > 0, or when |\| = 1 and o2 # 0, using (3.36) and (3.33) we
obtain

oo Alv? |Ale]
AM(1=-=2) = = + 1 h 2>0. 3.43
[Al ( 72> RS C R Rl O e <1, when o°> ( )

Now since ¢; — ¢ we deduce that for every e > 0 there is J = J(e) such that
lej —ch | <e Vj>J
which together with (3.43) implies that

Al (1 - nyf) <A<, V> (3.44)

Equations (3.42) and (3.44) together with (3.40) imply that
Ee; -0, VA (3.45)
when o2 # 0. Furthermore, using the fact that |c;| <~2, j > 1 we see that (3.37) implies that

7—1
Ee? < A% [H (1 - C’“) Ee? + Z { [ I1 (1 - 5’;)] )\Z(ji)’yZ} +9°
k=i+1

i=0
which again using (3.42) and (3.44) implies that
Ee; <Cv?, VAj>J (3.46)

when o2 > 0, for J sufficiently large. We are thus now left with considering the case 02 = 0,|\| = 1 for the
asymptotic behaviour of the error e;. Note that in this case, the limiting covariance matrix is equal to zero
but the convergence to it, unlike the case |A| < 1 is only algebraic, since in this case (3.35) implies that

oo 0
T2+ jeo

We deduce that in this case

] 2
A<1—CJ;1)_1—27+69g1, vji>1
v 7T JC

which similarly to the case 02 > 0 implies that (3.45) and (3.46) hold also for the case |A| = 1,02 = 0. Table

1 summarises the behaviour of the Kalman filter in the case of one-dimensional dynamics. Furthermore, the
limiting behaviour of the error e; satisfies , for all the possible combinations A and o2,

ej — N(0,a), where o< Cy%

We learn from this that, in the one-dimensional case, the Kalman filter can recover the true signal stably
and accurately provided that unstable directions are observed.
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Limiting covariance for 62 = 0 Limiting covariance for o2 > 0
Al <1 ¢j — 0 (exponentially) ¢ = O(v?) (exponentially)
Al=1 ¢j — 0 (algebraically) cj —~ch = O(7?) (exponentially)
A[>1 ] ¢j = ¢& = O(?) (exponentially) | ¢; = ¢} = O(v?) (exponentially)
TABLE 1

Summary of the limiting behaviour of covariance c;j for Kalman filter applied to one dimensional dynamics

3.4.2. The SDVAR Filter

Recall the 3DVAR filter (3.12). Armed with our insight from the analysis of the one-dimensional Kalman
filter, it is natural to ask when the 3DVAR filter will recover the true signal. To this end we assume that

yje1 = Hol |+ (3.47)
where the true signal {v;r }jen satisfies
U;+1 = ‘P(U;)a JjeN (3.48a)
v =u (3.48b)
and, for simplicity, we assume that
sup le;| = €. (3.49)
JEN

We have the following result.

Theorem 3.10. Assume that (3.49) holds and that C can be chosen so that (I — KH)U : R® — R" is
globally Lipschitz with constant a < 1 in some norm H . H, then there is constant ¢ > 0 such that

Cc

€

liyrlsotojp||mj —UJTH < 4%

Proof. We may write (3.12), (3.48), using (3.47), as

mjp1 = (I — KH)¥(m;) + KHU(v]) + Ke;
vl = - KH)¥ () + KH ().

Subtracting, and letting e; = m; — v;[ gives, for some finite constant ¢ independent of 7,

lejll < (T = KH)W(my) — (I = KH)W ()] + [|Ke]
< aHejH + ce.
Applying Gronwall gives the desired result. O
We refer to a map with Lipschitz constant less than 1 as a contraction in what follows.

Remark 3.11. This simple theorem shows that it may be possible to construct filters which lock-on to a small
neighbourhood of the true signal underlying the data, and can recover from being initialized far from the truth.
This illustrates a key idea in filtering: the question of of whether a C can be chosen to make (I — KH)W
into a contraction involves a subtle interplay between the underlying unobserved dynamics, encapsulated in
U, and the observation operator H. In rough terms the question of making (I — KH)¥ into a contraction is
the question as to whether the unstable parts of the dynamics are observed; if they are then it is typically the
case that C can be designed to obtain the desired contraction.

Example 3.12. Assume that H = I, so that the whole system is observed, that T = +2I and C = o?I.

Then, for n = Z—z

o2

S=(*+)I, K=-—5—51I
(CT 7) (0_2+,y2)
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and ) )
Y n
I —KH) = I = I.
( Pt Ll ey

Thus, if U : R™ — R" is globally Lipschitz with constant A > 0 in the Euclidean norm, |-|, then (I — KH)W¥
2

is globally Lipschitz with constant a < 1, if n is chosen so that 117?2 < 1. Thus, by choosing n sufficiently

small the filter can be made to contract. This corresponds to trusting the data sufficiently in comparison to

the model. It is a form of variance inflation.

Example 3.13. Assume that there is a partition of the state space in which H = (I,0)T, so that only part
of the system is observed. Set T = ~%I and C = o®I. Then, with 1 as in the previous example,

,',]2
I—KH=| ™l 0.
0 I

Now variance inflation may help to stabilize the filter, but more is required: it is clear from this simple example
that making (I — KH)V() into a contraction will require a relationship between the subspace in which we
observe and the space in which the dynamics of the map is expanding and contracting. For example, if

U(u) = Lu and
2I 0
L= ( 0 al )

27]2
1-xmr=| =7l 0
0 al

then

When |a| < 1 this can be made into a contraction by choosing n sufficiently small; but for |a| > 1 this is no
longer possible. This illustrates the intuitive idea that the observations should be sufficiently rich to ensure
that the unstable directions within the dynamics can be tamed by observing them.

3.5. Illustrations

Our first illustration concerns the Kalman filter applied to the linear system of Example 1.2 with A = As.
We assume that H = (1,0) so that we observe only the first component of the system and the model and
observational covariances are ¥ = I and I' = 1, where I is the 2 x 2 identity. The problem is initialized
with mean 0 and covariance 10 I. Figure 21a shows the behaviour of the filter on the unobserved component,
showing how the mean locks onto a small neighbourhood of the truth and how the one-standard deviation
confidence intervals computed from the variance on the second component also shrink from a large initial
value to an asymptotic small value; this value is determined by the observational noise variance in the
first component. In Figure 21b the trace of the covariance matrix is plotted demonstrating that the total
covariance matrix asymptotes to a small limiting matrix. And finally Figure 21c shows the mean-square error
and its running average. We will employ similar figures (a), (b) and (c) in the examples which follow in this
section.

Our next illustration shows the 3DVAR methodology applied to the Example 1.4 with r = 2.5. We
consider noise-free dynamics and observational variance of 42 = 10~2. The fixed model covariance is chosen
to be ¢ = 42/n with n = 0.2. The resulting algorithm performs well tracking the truth with asymptotic
time-averged mean-square error of size roughly 1072, See Figure 22.

We now compare the performance of 3DVAR, ExKF and EnKF on Example 1.3 with o = 2.5 and model
noise variance 0.3. The observational noise variance is set at 1. For 3DVAR, we take n = 0.5. For the EnKF
we take 100 ensemble members. Figures 23, 24 and 25 summarize the algorithm behaviour for 3DVAR, ExKF
and EnKF respectively. Notice from Fig. 24 that the ExKF has small error for most of the simulation, but
that sporadic large (in comparison to those seen for 3DVAR and EnKF) excursions are seen in the error.
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Fi1G 21. Kalman filter applied to the linear system of Ezxample 1.2 with A = A3z, H = (1,0), ¥ =1, and I’ = 1, see also p7.m
in Section 4.3.1. The problem is initialized with mean 0 and covariance 101.
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FIG 22. 83DVAR methodology applied to the logistic map Example 1.4 with r =4, v = 1072, and ¢ = 72/77 with n = 0.2, see
also p8.m in Section 4.3.2.

Figure 26 compares the errors incurred by the three methods, demonstrating that the EnKF is the most
accurate method on average, with ExKF the least accurate on average. Notice from Fig. 26(a) that the error
distribution of 3DVAR is the widest, and both it and EnKF remain consistently accurate. The distribution
of ExKF is similar to EnKF, except with fat tails associated to the destabilization intervals seen in Fig. 24.

Finally, ETKF (Fig. 27), and the particle filters with optimal (Fig. 29) and standard (Fig. 28) proposals
are also compared also on Example 1.3 with o = 2.5,0 = 0.3, and v = 1 with 100 ensemble members each.
Notice from Fig. 27(c) that ETKF is more prone to destabilization than EnKF with perturbed observations
in Fig. 25(c). Also, notice from Fig. 28(c) that the particle filter with standard proposal is more prone
to destabilization than the optimal proposal in Fig. 29(c), although the optimal proposal still loses track
sometimes. Fig. 30(a) shows that the error distribution of all these filters is similar, and ETKF and optimal
proposal SIRS also remain consistently accurate. The distribution of standard SIRS is similar to the optimal
proposal, except with fat tails associated to the destabilization intervals seen in Fig. 28, which leads to the
larger RMSE, similar to ExKF.

3.6. Bibliographic Notes

e Section 3.1 The Kalman Filter has found wide-ranging application to low dimensional engineering
applications where the linear Gaussian model is appropriate, since its introduction in 1960 [Kal60].
In addition to the original motivation in control of flight vehicles, it has grown in importance in the
fields of econometric time-series analysis, and signal processing [Har91]. It is also important because
it plays a key role in the development of the ad hoc non-Gaussian filters which are the subject of the
next section. The idea behind the Kalman filter, to optimally combine model and data, is arguably
one of the most important ideas in applied mathematics over the last century: the impact of the paper
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Fic 23. 3DVAR for the sin map Ezample 1.3 with o = 2.5, 0 = 0.3,v =1, and n = 0.2, see also p9.m in Section 4.3.3.
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Fic 24. ExKF on the sin map Example 1.8 with a = 2.5, 0 = 0.3, and v = 1, see also p10.m in Section 4.3.4.

[Kal60] on many applications domains has been huge.

e Section 3.2 All the non-Gaussian Filters we discuss are based on modifying the Kalman filter so that it
may be applied to non-linear problems. The development of new filters is a very active area of research
and the reader is directed to the book [MH12], together with the articles [CMT10],[MHG10] and [VLO09]
for insight into some of the recent developments with an applied mathematics perspective.

The 3DVAR algorithm was proposed at the UK Met Office in 1986 [Lor00, LBB*00], and was subse-
quently developed by the US National Oceanic and Atmospheric Administration [PD92] and by the
European Centre for Medium-Range Weather Forecasts (ECMWF) in [CAH'98]. The 3DVAR algo-
rithm is prototypical of the many more sophisticated filters which are now widely used in practice and
it is thus natural to study it.

The extended Kalman filter was developed in the control theory community and is discussed at length
in [Jaz70]. It is not practical to implement in high dimensions, and low-rank extended Kalman filters
are then used instead; see [L.S12] for a recent discussion.

The ensemble Kalman filter uses a set of particles to estimate covariance information, and may be
viewed as an approximation of the extended Kalman filter, designed to be suitable in high dimensions.
See [Eve06] for an overview of the methodology, written by one of its originators, and [VLE96] for an
early example of the power of the method.

Note that the I" appearing in the perturbed observation EnKF can be replaced by the sample covariance

T of the {77J +1} iw—y and this is often done in pracice. The sample covariance of the updated ensemble in

this case is equal to (I — KJHH)CJH where KJH is the gain corresponding to the sample covariance
I.

Following the great success of the ensemble Kalman filter algorithm, in a series of papers [TAB103,
BEMO1, And01, WHO2], the square-root filter framework was (re)discovered. The idea goes back to
at least [And68]. We focused the discussion above in Sec. 3.2.4 to the ETKF, but note that one may
derive different transformations. For example, the singular evolutive interpolated Kalman (SEIK) filter
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Fic 25. EnKF on the sin map Example 1.3 with o = 2.5, 0 = 0.3, v =1 and N = 100, see also pl1.m in Section 4.3.5.
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Fic 26. Convergence of e for each filter for the sin map Example 1.3, corresponding to solutions from Figs. 23, 24, 25.

proceeds by first projecting the ensemble into the K — 1-dimensional mean-free subspace, and then
identifying a K — 1 x K — 1 matrix transformation, effectively prescribing a K x (K — 1) matrix

transformation L; as opposed to the K x K rank K — 1 matrix le/ 2 proposed in ETKF. The former
is unique up to unitary transformation, while the latter is unique only up to unitary transformations
which have 1 as eigenvector. Other alternative transformations may take the forms A; or K ; such
that X; = Aj)/(:j or X; = (I - KH))/(\'J-. These are known as the ensemble adjustment Kalman filter
(EAKF) and the ensemble square-root filter (ESRF) respectively. See the following papers for details
about the ETKF [BEMO01], the EAKF [And01], and the ESRF [WHO02]. A review of all three is given
in [TAB*03]. The SEIK filter was introduced in [PVG98] and is compared with the other square root
filters in [NJSH12].

More details regarding tuning of filters through inflation can be found in [AA99, FKO05, Jaz70]. An
early reference illustrating the benefits and possible implementation of localization is [HMO01].

Section 3.3. In the linear case, the extended Kalman filter of course coincides with the Kalman filter;
furthermore, in this case the perturbed observation ensemble Kalman filter reproduces the true poste-
rior distribution in the large particle limit [Eve06]. However the filters introduced in section 3.2 do not
produce the correct posterior distribution when applied to general nonlinear problems. The particle
filter does recover the true posterior distribution as the number of particles tends to infinity, as we
show in Theorem 3.5. This proof is adapted from the very clear exposition in [RvH13].

For more refined analyses of the convergence of particle filters see, for example, [CD02, DMGO01] and
references therein. As explained in Remarks 3.6 the constant appearing in the convergence results may
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Fic 27. ETKF on the sin map Ezample 1.3 with o = 2.5, 0 = 0.3, v =1 and N = 100, see also p12.m in Section 4.3.6.
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F1G 28. Particle Filter (standard proposal) on the sin map Ezample 1.3 with o = 2.5, 0 = 0.3, v =1 and N = 100, see also
p13.m in Section 4.3.7.

depend exponentially on time if the mixing properties of the transition kernel P(dv;|v;_1) are poor (the
undesirable properties of deterministic dynamics illustrate this). This is also interesting work studying
the effect of the dimension [SBBAO0S]. A proof in the case of Dobrushin ergodic coefficient for transition
kernel may be found in [DMGO1]; the assumptions there on the transition and observation kernels are
very strong, and are generally not satisfied in practice, but studies indicate comparable results may
hold under less stringent conditions.

For a derivation and discussion of the optimal proposal, introduced in section 3.3.3, see [DGAOO]
and references therein. We also mention here the implicit filters developed by Chorin and co-workers
[CT09, CT10, CMT10]. These involve solving an implicit nonlinear equation for each particle which
includes knowledge of the next set of observed data. This has some similarities to the method proposed
in [vL10b] and both are related to the optimal proposal mentioned above.

e Section 3.4. The stability of the Kalman filter is a well-studied subject and the book [LR95] provides
an excellent overview from the perspective of linear algebra. For extensions to the extended Kalman
filter see [Jaz70]. Theorem 3.10 provides a glimpse into the mechanisms at play within 3DVAR, and
approximate Gaussian filters in general, in determining stability and accuracy: the incorporation of
data can convert unstable dynamical systems, with positive Lyapunov exponents, into contractive non-
autnonomous dynamical systems, thereby leading, in the case of small observational noise, to filters
which recover the true signal within a small error. This idea was highlighted in [CGTUO08] and first
studied rigorously for the 3DVAR method applied to the Navier-Stokes equation in [BLLT12]; this
work was subsequently generalied to a variety of different models in [PMLvL12, MLPvL13, LSS14].
It is also of note that these analyses of 3DVAR build heavily on ideas developed in [HOT11] for a
specialized form of data assimilation in which the observations are noise-free.

Similar ideas are studied for the perturbed observation EnKF in [KLS13]; in this case it is necessary
to introduce a form a variance inflation to get a result analogous to Theorem 3.10.
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F1c 29. Particle Filter (optimal proposal) on the sin map Ezample 1.3 with o = 2.5, 0 = 0.3, v = 1 and N = 100, see also

pld.m in Section 4.3.8.
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Fic 30. Convergence of e = v — m for both versions of EnKF in comparison to the particle filters for the sin map Ex. 1.3,
corresponding to solutions from Figs. 25, 27, 28, and 29.

In the context of filter stability it is important to understand the optimality of the true filtering
distribution. We observe that all of the filtering algorithms that we have described produce an estimate
of the probability distribution P(v;|Y;) that depends only on the data Y. There is a precise sense in
which the true filtering distribution can be used to find a lower bound on the accuracy that can be
achieved by any of these approximate algorithms. We let E(v;|Y;) denote the mean of v; under the
probability distribution P(v;|Y;) and let E;(Y;) denote any estimate of the state v; based only on data
Y;. Now consider all possible random data sets Y} generated by the model (1.1), (1.2), noting that the
randomness is generated by the initial condition vy and the noises {¢;,7;}; in particular, conditioning
on Y to obtain the probability distribution P(v;|Y;) can be thought of as being induced by conditioning
on the obervational noise {ny }x=1,... ;. Then £} (Y;) := E(v;]Y;) minimizes the mean-square error with
respect to the random model (1.1), (1.2) [Lue68, Jaz70, Kal60]:

Eljv; —

B (V)| < Ellv; — E;(¥)II?

for all E;(Y;). Thus the algorithms we have described can do no better at estimating the state of
the system than can be achieved, in principle, from the conditional mean of the state given the data
E(v,]Y;). This lower bound holds on average over all instances of the model. An alternative way to
view the inequality (3.50) is as a means to providing upper bounds on the true filter. For example,
under the conditions of Theorem 3.10 the righthand side of (3.50) is, asymptotically as j — oo, of size

59

(3.50)



O(€?); thus we deduce that
limsup E||v; — E(v;]Y;)[|* < Ce*.
j—?OO

Section 3.5 We mention here the rank histogram. This is another consistency check on the output of
ensemble or particle based approximations of the filtering distribution. The idea is to consider scalar
observed quantities consisting of generating ordered bins associated to that scalar and then keeping
track of the statistics over time of the data y; with respect to the bins. For example, if one has an
approximation of the distribution consisting of N equally-weighted particles, then a rank histogram
for the first component of the state consists of three steps, each carried out at each time j. First,
add a random draw from the observational noise N(0,T") to each particle after the prediction phase of
the algorithm. Secondly order the particles according to the value of their first component, generating
N — 1 bins between the values of the first component of each particle, and with one extra bin on
each end. Finally, rank the current observation y; between 1 and N + 1 depending on which bin it
lands in. Proceeding to do this at each time j, a histogram of the rank of the observations is obtained.
The “spread” of the ensemble can be evaluated using this diagnostic. If the histogram is uniform,
then the spread is consistent. If it is concentrated to the center, then the spread is overestimated.
If it is concentrated at the edges, then the spread is underestimated. This consitency check on the
statistical model used was introduced in [And96] and is widely adopted throughout the data assimilation
community.
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4. Discrete Time: MATLAB Programs

This chapter is dedicated to illustrating the theory and algorithms, as presented in the previous chapters,
through a few short and easy to follow MATLAB programs. These programs are provided for two reasons:
(i) for some readers they will form the best route by which to appreciate the details of the algorithms we
describe; (ii) for other readers they will be a useful starting point to develop their own codes: whilst ours
are not necessarily the optimal implementations of the algorithms discussed in these notes, they have been
structured to be simple to understand, to modify and to extend. In particular the code may be readily
extended to solve problems more complex than those described in the Examples 1.1-1.7 which we will use
for most of our illustrations.

Before getting into details we highlight out a few principles that have been adopted in the programs and
in accompanying text of this chapter. First, notation is consistent between programs, and matches the text
in the previous sections of the book as far as possible. Second, since many of the elements of the individual
programs are repeated, they will be described in detail only in the text corresponding to the program in
which they first appear; the short annotations explaining them will be repeated within the programs however.
Third, one should always remember that documentation is available at the command line for any built-in
functions of MATLAB and this can be accessed using the help command; for example the documentation for
the command help can be accessed by typing help help.

4.1. Chapter 1 Programs

The programs pl.m and p2.m used to generate the figures in Chapter 1 are presented in this section. Thus
these algorithms simply solve the dynamical system (1.1), and process the resulting data.

4.1.1. pl.m

The first program pl.m illustrates how to obtain sample paths from equations (1.1) and (1.3). In particular
the program simulates sample paths of the equation

uj+1 = asin(u;) + &, (4.1)

with € ~ N(0,0?) and a = 2.5, both for deterministic (¢ = 0) and stochastic dynamics (o # 0) corresponding
to Example 1.3. In line 5 the variable J is defined, which corresponds to the number of forward steps that
we will take. The parameters o and o are set in lines 6-7. The seed for the random number generator is set
to sde N in line 8 using the command rng(sd). This guarantees the results will be reproduced exactly by
running the program with this same sd. Different choices of sde N will lead to different streams of random
numbers used in the program, which may also be desirable in order to observe the effects of different random
numbers on the output. This command will be called in the preamble of all of the programs that follow. In
line 9, two vectors of length J are created named v and vnoise; after running the program, these two vectors
contain the solution for the case of deterministic (¢ = 0) and stochastic dynamics (o = 0.25) respectively.
After setting the initial conditions in line 10, the desired map is iterated, without and with noise, in lines
12 — 15. Note that the only difference between the forward iterations of v and vnoise is the presence of the
sigma*randn term, which corresponds to the generation of a random variable sampled from N (0, 0?). Lines
17-20, graph the trajectories with and without noise to produce Figure 3. Figures 1,2 and 5 were obtained
by simply modifying lines 12 — 15 of this program, in order to create sample paths for the corresponding ¥
for the other three examples, and Figure 4 was generated from output of this program.
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clear;set (0, 'defaultaxesfontsize',20); format long
pl.m — behaviour of sin map (Ex. 1.3)
with and without observational noise

J=10000; % number of steps

alpha=2.5;% dynamics determined by alpha

sigma=0.25;% dynamics noise variance is sigma”2

sd=1l;rng(sd);% Choose random number seed

v=zeros (J,1l); vnoise=zeros(J,1l);% preallocation for saving time
v(l)=1;vnoise(l)=1; %initial conditions

for i=1:J-1

v (i+l)=alphaxsin(v(i));

vnoise (i+l)=alpha*sin (vnoise (i) ) +sigmaxrandn;
end

figure(l), plot([1l:1:J],v),

xlabel('j'"), ylabel('v'), title('noise—free dynamics')
figure(2), plot([1l:1:J],vnoise),

xlabel('J"), ylabel('v'), title('noisy dynamics')
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4.1.2. p2.m

The second program presented here, p2.m, is designed to visualize the posterior distribution in the case of
one dimensional deterministic dynamics. For clarity, the program is separated into three main sections. The
setup section in lines 5-10 defines the parameters of the problem. The model parameter is now given by r
in line 6, which determines the dynamics of the forward model, in this case given by the logistic map (1.12)

Vj = ’I"Uj_l(l — ’Uj_l). (42)

The dynamics are taken as deterministic, so the parameter sigma does not feature here. The parameter r= 2
so that the dynamics are not chaotic, as the explicit solution given in Example 1.4 shows. New parameters m0
and CO define the prior distribution vy ~ N(mg, Cp), and gamma defines the observational noise n; ~ N(0,7?).

The truth section in lines 14-20 generates the true reference trajectory (or, truth) vt in line 18 given by
(4.2), as well as the observations y in line 19 given by

Yj = vj + ;. (4.3)

Note that the index of y(:,j) corresponds to observation of Hxv(:,j+1). This is due to the fact that the
first index of an array in matlab is j=1, while the initial condition is vy, and the first observation is of v;.
So, effectively the indices of y are correct as corresponding to the text and Eq. (4.3), but the indices of v are
one off. The memory for these vectors is preallocated in line 14. This is not necessary because MATLAB would
simply dynamically allocate the memory in its absence, but it would slow down the computations due to the
necessity of allocating new memory each time the given array changes size. One may comment this line to
observe the effect, which becomes significant when J becomes sufficiently large.

The solution section after line 24 computes the solution, in this case the point-wise representation of
the posterior smoothing distribution on the scalar initial condition. The point-wise values of initial condition
are given by the vector vO(vg) defined in line 24. There are many ways to construct such vectors, this
convention defines the initial (0.01) and final (0.99) values and a uniform step size 0.0005. One may also
use the command vO=1linspace(0.01,0.99,1961), defining the number of intermediate points N = 1961,
rather than the stepsize 0.0005. The corresponding vectors of values of Phi0 (®g), JO (Jp), and I0(lp) are
computed in lines 29, 32, and 34 for each value of v0, as related by the equation

In(vo;y) = Jo(vo) + Po(vo; ), (4.4)

where Jy(vp) is the background penalization and ®g(vo;y) is the model-data misfit functional given by
(1.28b) and (1.28c¢) respectively. The function Iy(vg;y) is the negative log-posterior as given in Theorem 1.9.
Having obtained Iy(vo;y) we calculate P(vgly) in lines 37-38, using the formula

~exp(—{o(vo;¥))
Pl = T o) (45)

The trajectory v corresponding to the given value of vy (v0(i)) is denoted by vv and is replaced for each new
value of vO (1) in lines 28 and 31 since it is only required to compute I0. The command trapz(v0,exp(-I0))
in line 37 approximates the denominator of the above by the trapezoidal rule, i.e. the summation

N1
trapz(v0, exp(—I10)) = Z (vO(i+1) —vO(i)) * (I0(i + 1) + I0(i))/2. (4.6)
i=1

The rest of the program deals with plotting our results and in this instance it coincides with the output of
Figure 11b. Again simple modifications of this program were used to produce Figures 10, 12 and 13. Note
that rng(sd) in line 8 allows us to use the same random numbers every time the file is executed generated
with the seed sd as described in the previous section 4.1.1. Commenting this line out would result in the
creation of data sets y different from the ones used to obtain Figure 11b.
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clear; set (0, 'defaultaxesfontsize',20); format long
% p2.m smoothing problem for the deterministic logistic map (Ex. 1.4)
setup

J=1000; % number of steps

r=2;% dynamics determined by r

gamma=0.1;% observational noise variance is gamma2
C0=0.01;% prior initial condition variance

m0=0.7;% prior initial condition mean

o

sd=1;rng(sd);% Choose random number seed
%% truth

vt=zeros (J+1,1); y=zeros(J,1l);% preallocate space to save time
vt(1)=0.1;% truth initial condition
for j=1:0
% can be replaced by Psi for each problem
vt (J+1)=r*xvt (Jj)*»(1—vt (j));% create truth
vy (j)=vt (j+1) +gamma*randn; $ create data
end

%% solution

v0=[0.01:0.0005:0.99]1;% construct vector of different initial data
PhiO=zeros (length(v0),1); I0=PhiO; J0=Phi0O; vv=zeros(J,1l);% preallocate space to save time
% loop through initial conditions vv0, and compute log posterior IO (vvO0)
for j=1:length (v0)
vv (1)=v0(J);
J0(3)=1/2/CO0% (v0(j)—m0) "2; Sbackground penalization
for i=1:J
v (1i+1l)=r*vv (i) * (1—vv (1)) ;
PhiO (j)=Phi0 (j)+1/2/gamma”2+* (y (i)—vv (i+1l)) "2; %$model—data misfit functional
end
I0(3)=Phi0 (3)+J0(3);
end

constant=trapz (v0,exp(—I0));% approximate normalizing constant
P=exp(—I0)/constant;% normalize posterior distribution

logprior=1/2/C0x (v0—m0) . 2;% compute log prior
constant=trapz (v0, exp(—logprior));% approximate normalizing constant
prior=exp(—logprior)/constant;% normalize prior distribution

figure(l),plot (v0,prior, 'k', 'LineWidth', 2)
hold on, plot(v0,P,'r—"', 'LineWidth',2), xlabel 'v.0',
legend 'prior' J=10"3
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4.2. Chapter 2 Programs

The programs p3.m-p6.m, used to generate the figures in Chapter 2, are presented in this section. Various
MCMC algorithms used to sample the posterior smoothing distribution are given. Optimization algorithms
used to obtain solution of the 4DVAR and w4DVAR variational methods are also given. Although our general
development of MCMC methods concerned a notation of w for the state of the chain and w for the proposal,
the programs described here use the letter v for the state of the Markov chain, to keep the connection with
the underlying dynamics model.

4.2.1. p3.m

The MATLAB program p3.m is the first of the Markov Chain Monte Carlo (MCMC) algorithms given. It con-
tains an implementation of the Random walk Metropolis (RWM) Algorithm from section 2.1.2 to determine
the posterior distribution on the initial condition arising from the deterministic logistic map of Example
1.4 given by (4.2). Note that in this case, since the the underlying dynamics are deterministic and hence
completely determined by the initial condition, the RMW algorithm will provide samples from a probability
distribution on R.

As in program p2.m the program is divided into 3 sections setup where parameters are defined, truth
where the truth and data are generated, and solution where the solution is computed, this time monte-carlo
samples from the posterior smoothing distribution. The parameters in lines 5-10 and the true solution (here
taken as only the initial condition, rather than the trajectory it gives rise to) vt in line 14 are taken to be
the same as those used to generate Figure 13. The temporary vector vv generated in line 19 is the trajectory
corresponding to the truth (vv(1)=vt in line 14), and used to calculate the observations y in line 20. The
true value vt will also be used as the initial sample in the MCMC for this and subsequent MCMC programs.
This scenario is not possible in the case that the data is not simulated, however it is useful in the case that
the data is simulated as it is here, because it can reduce the burn-in time, i.e. the time necessary for the
current sample in the chain to reach the target distribution, or the high-probability region of the state-space.
Therefore, I0 will be necessary to compute the acceptance probability as described below. It is computed in
lines 15-23 exactly as in lines 25-34 of program p2.m, as described around (4.4).

In the solution section some additional MCMC parameters are defined.In line 28 the number of samples
is set to N =10°.For the parameters and specific data used here, this is sufficient for convergence of the
Markov chain. In line 30 the step-size parameter beta is pre-set such that the algorithm for this particular
posterior distribution has a reasonable acceptance probability, or ratio of accepted vs. rejected moves. A
general rule of thumb for this is that it should be somewhere around 0.5, to ensure that the algorithm is
not too correlated because of high rejection rate (acceptance probability near zero) and that it is not too
correlated because of small moves (acceptance probability near one). The vector V defined in line 29 will
save all of the samples. This is an example where pre-allocation is very important. Try using the commands
tic and toc before and respectively after the loop in lines 33-50 in order to time the chain both with and
without pre-allocation. ® In line 34 a move is proposed according to the equation

w®) = pk=1) 4 g (k=1)

where v(v) is the current state of the chain (initially taken to be equal to the true initial condition wvy),
(*=D=randn is an i.i.d. standard normal, and w represents w*). Indices are not used for v and w because
they will be replaced at each iteration.

The temporary variable vv is again used for the trajectory corresponding to w*) as a vehicle to compute
the value the proposed I(w*);y), denoted in line 42 by I0prop = JOprop + Phiprop. In lines 44-46 the
decision to accept or reject the proposal is made based on the acceptance probability

a(@® D w®) = 1 A exp(Io(v* Vs y) — I(w®; y)).

5In practice, one may often choose to collect certain statistics from the chain ”on-the-fly” rather than saving every sample,

particularly if the state-space is high-dimensional where one pays a premium price in memory for each sample.
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In practice this corresponds to drawing a uniform random number rand and replacing v and IO in line 45
with w and IOprop if rand<exp(IO-IOprop) in line 44. The variable bb is incremented if the proposal is
accepted, so that the running ratio of accepted moves bb to total steps n can be computed in line 47. This
approximates the average acceptance probability. The current sample v(¥) is stored in line 48. Notice that
here one could replace v by V(n-1) in line 34, and by V(n) in line 45, thereby eliminating v and line 48,
and letting w be the only temporary variable. However, the present construction is favorable because, as
mentioned above, in general one may not wish to save every sample.

The samples V are used in lines 51-53 in order to visualize the posterior distribution. In particular, bins
of width dx are defined in line 51, and the command hist is used in line 52. Z = hist(V,v0) means first
the real-number line is split into M bins with centers defined according to vO(i) for ¢ = 1,..., M, with
the first and last bin corresponding to the negative, respectively positive, half-lines. Second, Z(i) counts
the number of k for which V(k) is in the bin with center determined by v0(i). Again, trapz (4.6) is used
to compute the normalizing constant in line 53, directly within the plotting command. The choice of the
location of the histogram bins allows for a direct comparison with the posterior distribution calculated from
the MATLAB program p2.m by directly evaluation of Iy(v;y) defined in 4.4 for different values of initial
conditions v. This output is then compared with the corresponding output of p2.m for the same parameters
in Figure 14.
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clear; set (0, 'defaultaxesfontsize',20); format long
% p3.m MCMC RWM algorithm for logistic map (Ex. 1.4)
setup

o
S
o
5

oo oo

J=5;% number of steps

r=4;% dynamics determined by alpha

gamma=0.2;% observational noise variance is gamma2
C0=0.01;% prior initial condition variance

m0=0.5;% prior initial condition mean

sd=10; rng(sd) ;% Choose random number seed

%% truth

vt=0.3;vv(l)=vt;%$ truth initial condition
J0=1/2/C0* (vt—m0) "2; %$background penalization
Phi0=0; %initialization model—data misfit functional
for j=1:J
% can be replaced by Psi for each problem
vv (j+1)=r*xvv (J)x(1l—vv(j));% create truth
v (j)=vv (j+1l)+gammarrandn; $ create data
Phi0=Phi0+1/2/gamma”2* (y (J)—vv (J+1)) "2;% compute model—data misfit functional
end
I0=J0+Phi0O; %compute log posterior of the truth

o

solution

Markov Chain Monte Carlo: N forward steps of the

Markov Chain on R (with truth initial condition)

N=1le5;% number of samples

V=zeros(N,1l);% preallocate space to save time

beta=0.05;% step—size of random walker

v=vt;% truth initial condition (or else update I0)

n=1; bb=0; rat(1l)=0;

while n<N

w=v+sqrt (2«beta) xrandn; ¥ propose sample from random walker

vv(l)=w;

J0prop=1/2/C0* (w—m0) "2; %background penalization

PhiOprop=0;

for i=1:J
vv (1+1) =r*vv (i) *(1—vv(i));
PhiOprop=PhiOprop+1l/2/gamma”2x* (y (1) —vv (i+1)) " 2;

° o ol

o\

end
I0prop=J0prop+Philprop; Scompute log posterior of the proposal

if rand<exp (I0O—IOprop)% accept or reject proposed sample
v=w; I0=I0prop; bb=bb+l;% update the Markov chain
end
rat (n)=bb/n;% running rate of acceptance
V(n)=v;% store the chain
n=n+1;
end
dx=0.0005; v0=[0.01:dx:0.991];
Z=hist (V,v0) ;% construct the posterior histogram
figure (1), plot(v0,Z/trapz(v0,z),'k', 'Linewidth',2)% visualize the posterior
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4.2.2. p4.m

The MATLAB program p4.m contains an implementation of the independence dynamics sampler for stochastic
dynamics, as introduced in section 2.1.3. Thus the posterior distribution is on the entire signal {v;};cy. The
forward model in this case is from Example 1.3, given by (4.1). The smoothing distribution P(v|Y") is therefore
over the state-space R7*1,

The sections setup, truth, and solution are defined exactly as in program 4.2.1, except this time the
smoothing distribution is over the entire path. Since the state-space is now the path-space, rather than the
initial condition as it was in program 4.2.1, the truth vt€ R’*! is now a vector. Its initial condition is taken
as a draw from N(mg, Cp) in line 16, and the trajectory is computed in line 19, so that at the end vt~ pq.
Again, v' (vt) will be the initial condition in the Markov chain and so ®(v';y) is computed in line 22. Recall
from section 2.1.3 that only ®(-;y) is required to compute the acceptance probability in this algorithm.

Notice that the collection of samples V€ RY*7/+1 pre-allocated in line 29 is already becoming quite large
in this case, illustrating the memory issue which arises when the state-space and number of samples increase.

The current state of the chain v*), and the value of @(v(k);y) are again denoted v and Phi, while the
proposal w®) and the value of @(w(k); y) are again denoted w and Phiprop, as in program 4.2.1. As discussed
in section 2.1.3, the proposal w®) is an independent sample from the prior distribution pg, similarly to v,
and it is constructed in lines 33-38. The acceptance probability used in line 39 is now

a(@* Y w®) = 1 Aexp(@(0*Viy) — d(w™;y)),

The rest of the program is the same as 4.2.1. The outputs of this program are used to plot Figures 15, 16,
and 17. Note that in the case of Figure 17, we have used N = 10% samples.
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41

clear; set (0, 'defaultaxesfontsize',20); format long
%% p4.m MCMC INDEPENDENCE DYNAMICS SAMPLER algorithm
%% for sin map (Ex. 1.3) with noise

% setup

o0 oo oo

J=10;% number of steps

alpha=2.5;% dynamics determined by alpha
gamma=1; % observational noise variance is gamma”2
sigma=1;% dynamics noise variance is sigma”2

C0=1;% prior initial condition variance
m0=0;% prior initial condition mean
sd=10;rng(sd) ;% Choose random number seed

%% truth

vt (1)=mO0+sqgrt (CO) xrandn; $ truth initial condition
Phi=0;
for j=1:J
vt (j+1)=alphaxsin (vt (j))+sigma*randn; $ create truth
v (j)=vt (j+1)+tgammarrandn; $ create data
% calculate log likelihood of truth, Phi(v;y) from (1.11)
Phi=Phi+1/2/gamma”2* (y (j)—vt (j+1)) "2;

0]
=]
[o}

o

solution
Markov Chain Monte Carlo: N forward steps of the
Markov Chain on R"{J+1} with truth initial condition
N=1le5;% number of samples
V=zeros (N, J+1) ;% preallocate space to save time
v=vt;% truth initial condition (or else update Phi)
n=1; bb=0; rat(1)=0;
while n<N
w(1l)=sqgrt (C0) xrandn; $ propose sample from the prior distribution
Phiprop=0;
for j=1:J
w(j+1l)=alphaxsin(w(j))+sigmaxrandn; %
Phiprop=Phiprop+1/2/gamma”2+* (y (J)—w (]
end
if rand<exp (Phi—Phiprop)$% accept or reject proposed sample
v=w; Phi=Phiprop; bb=bb+1l;% update the Markov chain

O o° oo

o\

propose sample from the prior distribution
+1))"2;% compute likelihood

end

rat (n)=bb/n;% running rate of acceptance
V(n, :)=v;% store the chain
n=n+1;

end
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4.2.3. pb.m

The independence dynamics sampler 4.2.2 may be very inefficient as typical random draws from the dynam-
ics may be unlikely to fit the data, and will hence be rejected. The fifth MATLAB program p5.m gives an
implementation of the pCN algorithm from section 2.1.3 which is designed to overcome this issue.

This program is almost identical to p4.m, and so only the points at which it differs will be described.
First, since the acceptance probability is given by

a0, w®) = 1A exp(@(v™Diy) - d(wMiy) + GRD) = G,

the quantity

Z(,m—a\ll uj)|* — <E_%uj+1, E_%‘I’(uj»)

7=0

will need to be computed, both for v(*) denoted by v in lines 32 and 45 where its value is denoted by G
(v = o and G(v') is computed in line 21), and for w*), denoted by w in line 37, where its value is denoted
by Gprop in line 40. This program is used to generate Figure 18

As discussed in section 2.1.3 the proposal w(®) is given by

w® =m+ (1= 822 * D —m) + g+,

where ((*~1) ~ N(0, C) are i.i.d. and denoted by iota in line 36. C' is the covariance of the Gaussian measure
mo given in Equation (2.7) corresponding to the case of trivial dynamics ¥ = 0, and m is the mean of 7.
The value of m is given by m in line 34.
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clear;set (0, 'defaultaxesfontsize',20); format long
%%% p5.m MCMC pCN algorithm for sin map (Ex. 1.3) with noise
%% setup

J=10;% number of steps

alpha=2.5;% dynamics determined by alpha

gamma=1;% observational noise variance is gamma”2

sigma=1;% dynamics noise variance is sigma”2

prior initial condition wvariance

prior initial condition mean

;rng(sd) ;% Choose random number seed

o
S
o
S

Q
7

~
a0 oo ||

O~

o 3
&7
= o =

%% truth

vt (1)=sqrt (CO0) xrandn; % truth initial condition

G=0;Phi=0;

for j=1:J
vt (j+1)=alphaxsin (vt (j))+sigmaxrandn;$ create truth
vy (j)=vt (j+1) +gamma*randn; $ create data
% calculate log density from (1.—)
G=G+1/2/sigma”2* ((alphaxsin (vt (J))) "2—2%vt (j+1) ralphaxsin (vt (J)));
% calculate log likelihood phi(u;y) from (1.11)
Phi=Phi+1/2/gamma” 2+ (y (j)—vt (j+1)) "2;

0]
o}
[o}

o

solution

Markov Chain Monte Carlo: N forward steps of the

Markov Chain on R"{J} with truth initial condition

N=1e5;% number of samples

V=zeros (N,J+1);

beta=0.2;% step—size of pCN walker

v=vt;% truth initial condition (or update G + Phi)

n=1; bb=0; rat=0;

m=[m0; zeros (1,J)1]1;

while n<N
iota=[sqgrt (CO) xrandn, sigmaxrandn(l,J)];% Gaussian prior sample

w=m+sqrt (1—beta”2) x (v—m) tbetaxiota; % propose sample from the pCN walker

Gprop=0;Phiprop=0;

for j=1:J
Gprop=Gprop+1/2/sigma”2* ((alphaxsin(w(j))) "2—2+w (j+1) ralphaxsin(w(j)));
Phiprop=Phiprop+1/2/gamma”2* (y (j)—w (j+1)) "2;

end

o° o° o

if rand<exp (Phi—Phiprop+G—Gprop) % accept or reject proposed sample
v=w; Phi=Phiprop; G=Gprop;bb=bb+1;% update the Markov chain

end
rat (n)=bb/n; % running rate of acceptance
V(n, :)=v;% store the chain
n=n+1;

end

$plot samples, truth, observations

figure;nn=round (rand+«N);plot ([0:J],V(nn, :));hold;plot ([0:J],vt, 'r', 'Linewidth',2);
plot ([1:J],y,'g', 'Linewidth',2);for b=1:1e3; nn=round(rand*N);plot ([0:J],V(nn,:));
plot ([0:J],vt, 'r', "Linewidth',2);plot ([1:J],y,"'g"', 'Linewidth',2);hold
xlabel('j'"');legend('Posterior samples', 'truth', 'observations')

% trace plot and histogram

jay=J/2; [rho,ex]=hist (V(:, jay),100); figure;plot (V(1l:1e4, jay)) ;hold

plot (rho*5e3/max (rho),ex, 'r');title(strcat ('v_{',num2str (jay—1),"' }|Y_{',num2str(J),"'}"))
legend(strcat ('v {(n)}_{',num2str (jay—1), " }|Y_-{',num2str(J),'}"'), '"histogram');xlabel('n")
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4.2.4. p6.m

The next MATLAB program p6.m contains an implementation of the weak constrained variational algorithm
w4DVAR discussed in section 2.2. Again the forward model will be given by Example 1.11 (4.1). The setup
and truth sections are similar to the previous programs, except G,®, etc. need not be computed here.
Furthermore, note that this program is written as a function rather than as a script like the previous programs
were. This choice was made so that the MATLAB built-in function fminsearch can be used for optimization in
the solution section, and the program can still be self-contained. To use this built-in function it is necessary
to define an auziliary objective function I to be optimized. The function fminsearch can be used within
a script, but the auxiliary function would then have to be written separately, so we cannot avoid functions
altogether unless we write the optimization algorithm by hand. We avoid the latter in order not to divert
the focus of this text from the data assimilation problem, and algorithms to solve it, to the problem of how
to optimize an objective function.
The auxiliary objective function I in this case is I(+;y) from equation (1.27) given by

I(5y) = JC) + @(5p), (4.7)
where
J—1
Jw) = 51Co Huo —mo) + X 5[5 (g — W), (45)
§=0
and . o 2
(usy) = §‘F 2 (i1 — hlujn)) | (4.9)

=0

It is defined in lines 37-44. It takes as inputs (u,y,sigma,gamma,alpha,m0,C0,J), and gives output out=
I(u;y) where u € R’ (given all the other parameters in its definition — the issue of identifying the input
to be optimized over is discussed also below).

The initial guess for the optimization algorithm uu is taken as a standard normal random vector over
R7*! in line 27. In line 24, a standard normal random matrix of size 1002 is drawn and thrown away. This
is so one can easily change the input, e.g. to randn(z) for z€ N, and induce different random initial vectors
uu for the optimization algorithm, while keeping the data fixed by the random number seed sd set in line
12. One may also use the truth vt as initial guess by uncommenting line 28. In particular, if the output of
the minimisation procedure is different for different initial conditions, then it is possible that the objective
function I(;y) has multiple minima, and hence the posterior distribution P(-|y) is multi-modal. As we have
already seen in Figure 19 this is certainly true even in the case of scalar deterministic dynamics, when the
underlying map gives rise to a chaotic flow.

The MATLAB optimization function fminsearch is called in line 30. The function handle command @ (u) I (u,
-++) is used to tell fminsearch that the objective function I is to be considered a function of u, even though
it may take other parameter values as well (in this case, y,sigma, gamma,alpha,m0,C0, and J). The outputs
of fminsearch are the value vmap such that I(vmap) is minimum, the value fval = I(vmap), and the exit
flag which takes the value 1 if the algorithm has converged. The reader is encouraged to use the help com-
mand for more details on this and other MATLAB functions used in the notes. The results of this minimisation
procedure are plotted in lines 33-34 together with the true value v as well as the data y. In Figure 20 such
results are presented, including two minima which were found with different initial conditions.
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function this=p6

clear;set (0, 'defaultaxesfontsize',20); format long
%$%% p6.m weak 4DVAR for sin map (Ex. 1.3)

%% setup

J=5;% number of steps

alpha=2.5;% dynamics determined by alpha
gamma=1e0; % observational noise variance is gamma”2
sigma=1;% dynamics noise variance is sigma”2

C0=1;% prior initial condition variance
m0=0;% prior initial condition mean
sd=1;rng(sd);% Choose random number seed

vt (1)=sqgrt (CO0) xrandn; $ truth initial condition
for j=1:J
vt (j+1)=alphaxsin (vt (j))+sigmaxrandn;$ create truth
vy (j)=vt (j+1) +gamma*randn; $ create data
end
%% solution
randn (100) ;% try uncommenting or changing the argument for different
% initial conditions — 1f the result is not the same,
% there may be multimodality (e.g. 1 & 100).
uu=randn (1l,J+1);% initial guess
Suu=vt; % truth initial guess option

[vmap, fval,exitflag]=fminsearch (@ (u)I (u,y, sigma, gamma, alpha,m0,C0,J),uu)% solve with blackbox
% exitflag=1 ==> convergence

figure;plot ([0:J],vmap, 'Linewidth',2);hold;plot ([0:J],vt, 'r', 'Linewidth',2)
plot ([1:J],y,'g', 'Linewidth', 2);hold;xlabel('j"');legend('MAP"', 'truth','y")

%% auxiliary objective function definition
function out=I (u,y, sigma, gamma, alpha,m0,CO0, J)

Phi=0;JJ=1/2/C0x (u(l)—m0) "2;

for j=1:J
JJ=JJ+1/2/sigma”2* (u(j+1l)—alpha*sin(u(j))) "2;
Phi=Phi+1/2/gamma 2+ (y () —u (§+1)) "2;

end

out=Phi+JJ;
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4.3. Chapter 3 Programs

The programs p7.m-p14.m, used to generate the figures in Chapter 3, are presented in this section. Various
filtering algorithms used to sample the posterior filtering distribution are given, involving both Gaussian
approximation and particle approximation. Since these algorithms are run for very large times (large J),
they will only be divided in two sections, setup in which the parameters are defined, and solution in which
both the truth and observations are generated, and the online assimilation of the current observation into the
filter solution is performed. The generation of truth can be separated into a truth section as in the previous
sections, but two loops of length J would be required, and loops are notoriously inefficient in MATLAB , so
the present format is preferred. These programs are very similar, and their output is also similar, giving rise
to Figures 21-30. With the exception of p7.m and p8.m, the forward model is given by Example 1.11 (4.1),
and the output is identical, given for p9.m through p14.m in Figures 23-25 and 27-29. Figures 26 and 30
compare the filters from the other Figures. p7.m features a two-dimensional linear forward model, and p8.m
features the forward model from Example 1.12 (4.2).

4.3.1. p7.m

The first filtering MATLAB program is p7.m which contains an implementation of the Kalman Filter applied
to Example 1.2:

. 0 1
vjy1 = Av; + &,  with A:(1 O)

and observed data given by
Yi+1 = Hujpr + 111

with H = (1,0) and Gaussian noise. Thus only the first component of v; is observed.

The parameters and initial condition are defined in the setup section, lines 3-19. The vectors v, m € RV </,
ye R, and ¢ € RV*N*J are preallocated to hold the truth, mean, observations, and covariance over the
J observation times defined in line 5. In particular, notice that the true initial condition is drawn from
N(myg,Cp) in line 16, where mg = 0 and Cy = 1 are defined in lines 10-11. The initial estimate of the
distribution is defined in lines 17-18 as N (my, C{)), where m{, ~ N(0,1007) and C{ = 100Cy so that the code
may test the ability of the filter to lock onto the true distribution given a poor initial estimate.

The main solution loop then follows in lines 20-33. The truth v and the data that are being assimilated
y are sequentially generated within the loop, in lines 24-25. The filter prediction step, in lines 27-28, consists
of computing m; and C; as defined in (3.3) and (3.4) respectively:

T/Y\Lj :Amj,l, aj :ACj—lAT"’_Ev

Notice that indices are not used for the transient variables mhat and chat representing m; and éj because
they will not be saved from one iteration to the next. In lines 30-33 we implement the analysis formulae
for the Kalman filter from Corollary 3.2. In particular, the innovation (1.36) between the observation of the
estimated mean and the actual observation is first computed in line 30

dj = yj — H’r/ﬁj. (410)

Again d which represents d; does not have any index for the same reason as above. Next, the Kalman gain
defined in Corollary 3.2 is computed in line 31

K;=C;HT(HC,H" +T)~". (4.11)

Once again index is not used for the transient variable K representing K;. Notice the ”forward slash” / is
used to compute B/A=B A~!. This is an internal function of MATLAB which will analyze the matrices B and
A to determine the best method for inversion, for example if A is banded then —, with Gaussian elimination
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as last resort. The reverse operation can be done with the "backslash” \ , i.e. B\A=B~!'A. The update given
in Corollary 3.2 is completed in lines 30-32 with the equations

~

m]— = ’ﬁ’Lj + Kjdj and Cj = (I — K]H)C] (412)

Finally, in lines 36-50 the outputs of the program are used to plot the mean and the covariance as well as
the mean square error of the filter as functions of the iteration number j, as shown in Figure 21.
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clear;set (0, 'defaultaxesfontsize',20); format long
%$%% p7.m Kalman Filter, Ex. 1.2
%% setup

J=le3;% number of steps

N=2; %dimension of state
I=eye(N);% identity operator

gamma=1; % observational noise variance is gamma”2xI
sigma=1;% dynamics noise variance is sigma”2xI
CO=eye(2);% prior initial condition variance
m0=[0;0];% prior initial condition mean
sd=10;rng(sd) ;% Choose random number seed

A=[0 1;—1 0];% Dynamics determined by A

m=zeros (N, J) ;v=m;y=zeros (J, 1) ;c=zeros (N,N,J);% pre—allocate
v(:,1)=mO0+sgrtm(CO) *randn(N,1);% initial truth
m(:,1)=10+xrandn(N,1);% initial mean/estimate
c(:,:,1)=100%xC0;% initial covariance

H=[1,0];% observation operator

o

%% solution % assimilate!

for j=1:0
v(:,3+1)=Axv(:,j) + sigmaxrandn(N,1);% truth
v (j)=Hxv (:, j+1) tgamma*randn; s observation

mhat=A*m(:,j);% estimator predict
chat=Axc(:,:,J)*A'+sigma"2%I;% covariance predict

d=y (j)—H*mhat; % innovation

K= (chat*H'") / (H+chat+H'+gamma“"2) ;% Kalman gain

m(:, j+1)=mhat+Kxd; $ estimator update

c(:,:,3+1)=(I-K+*H)+chat; % covariance update
end

figure; js=21;plot ([0:Js—11,v(2,1:3s));hold;plot ([0:js—=1]1,m(2,1:3s),'m");
plot ([0:Js—1],m(2,1:]Js)+reshape(sqrt(c(2,2,1:3s)),1,3s), 'r—");

plot ([0:js—1]1,m(2,1:Js)—reshape (sqrt(c(2,2,1:3s)),1,3s), '=—");
hold;grid;xlabel ('iteration, j');

title('Kalman Filter, Ex. 1.2");

figure;plot ([0:J],reshape(c(l,1,:)+c(2,2,:),d+1,1));hold

plot ([0:J], cumsum(reshape(c(1,1,:)+c(2,2,:),J+1,1))./[1:J+1]"', 'm', 'Linewidth',2);grid

hold;xlabel ('iteration, j');axis([1l 1000 0 50]);
title('Kalman Filter Covariance, Ex. 1.2");

figure;plot ([0:J],sum((v—m)."2));hold;

plot ([0:J], cumsum (sum( (v—m) . 2))./[1:J+1], 'm', 'Linewidth',2) ;grid
hold;xlabel ('iteration, 7j');axis([1l 1000 0 50]);

title('Kalman Filter Error, Ex. 1.2")
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4.3.2. p8.m

The MATLAB program is p8.m contains an implementation of the 3DVAR method applied to the chaotic
logistic map of Example 1.4 (4.2) for r = 4.

As in the previous section, the parameters and initial condition are defined in the setup section, lines
3-16. In particular, notice that the truth initial condition v(1) and initial mean m(1), are now initialized in
lines 12-13 with a uniform random number using the command rand, so that they are in the interval [0, 1]
where the model is well-defined. Indeed the solution will eventually become unbounded if initial conditions
are chosen outside this interval. With this in mind, we set the dynamics noise sigma = 0 in line 8§, i.e.
deterministic dynamics, so that the true dynamics themselves do not go unbounded.

Notice the small stabilization parameter n (eta) from Example 3.12 is set in line 14, representing the ratio
in uncertainty of the observations vs. the model, or equivalently our trust of the model over the observations:
1n = 0 means the model is irrelevant while n — 0o would mean the observations are irrelevant. This then
gives rise to the constant scalar covariance C and resultant constant scalar gain K not to be confused with
the changing K in (4.11), temporarily defined by K in line 31 of p7.m.

The main solution loop follows in lines 20-33. Up to the different forward model, lines 21-22, 24, and
26-27 of this program are identical to lines 24-25, 27, 30, and 32 of p7.m described in section 4.3.1. The only
other difference is that the covariance updates are not here because of the constant covariance assumption
underlying the 3DVAR algorithm.

The 3DVAR filter may in principle generate estimated mean mhat outside [0, 1], because of the noise
in the data. In order to flag potential unbounded trajectories of the filter an extra stopping criteria is
included in lines 29-32. As a fun exercise, try setting sigma# 0 in line 8. Then the signal will eventually go
unbounded regardless of how small the noise variance is chosen. In this case the estimate will surely blowup
while tracking the unbounded signal. Otherwise, if 7 is chosen appropriately so as to stabilize the filter it
is extremely unlikely that the estimate will ever blowup. Finally, similarly to p7.m, in the last lines of the
program we use the outputs of the program in order to produce Figure 22, namely plotting the mean and
the covariance as well as the mean square error of the filter as functions of the iteration number j.
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clear;set (0, 'defaultaxesfontsize',20); format long
%$%% p8.m 3DVAR Filter, deterministic logistic map (Ex. 1.4)
%% setup

J=le3;% number of steps

r=4;% dynamics determined by r

gamma=le—1;% observational noise variance is gamma”2
sigma=0;% dynamics noise variance is sigma”2
sd=10;rng(sd) ;% Choose random number seed

m=zeros (J,1);v=m;y=m; s pre—allocate

v (1l)=rand; initial truth, in [0,1]

m(l)=rand;% initial mean/estimate, in [0,1]

eta=2e—1;% stabilization coefficient 0 < eta << 1
C=gamma”2/eta;H=1;% covariance and observation operator
K=(CxH') / (HxCxH'+gamma“"2) ;% Kalman gain

o
S
o
g

o

%% solution % assimilate!

for j=1:J
v(j+l)=rxv(j)*(l—v(J)) + sigmaxrandn;$% truth
v (j)=Hxv (j+1) +gamma*randn; $ observation

mhat=r*m(j)*(1l—m(j));% estimator predict

d=y (j)—H*mhat; % innovation
m(j+1l)=mhat+K+d; % estimator update

if norm(mhat)>1e5
disp('blowup!")
break
end
end
js=21;% plot truth, mean, standard deviation, observations
figure;plot ([0:Js—1],v(l:Js));hold;plot ([0:Js—1],m(l:3s), 'm");
plot ([0:js—1]1,m(1l:3s)+sqgrt(C), 'r—");plot ([1:Js—11,y(l:js—1), "kx");
plot ([0:Js—1],m(1l:js)—sqgrt(C), "r—");hold;grid;xlabel ("iteration, j');
title ('3DVAR Filter, Ex. 1.4")

figure;plot ([0:J],C+[0:J].70);hold
plot ([0:J]1,Cx[0:J].70, 'm', 'Linewidth',2) ;grid
hold;xlabel ('iteration, j');title('3DVAR Filter Covariance, Ex. 1.4");

figure;plot ([0:J], (v—m) . 2);hold;

plot ([0:J],cumsum( (v—m)."2)./[1:J+1]"', 'm', 'Linewidth',2);grid
hold;xlabel ('iteration, j');

title ('3DVAR Filter Error, Ex. 1.4")
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4.3.3. p9.m

A variation of program p8.m is given by p9.m, where the 3DVAR filter is implemented for Example 1.3 given
by (4.1). Indeed the remaining programs of this section will all be for the same Example 1.3 so this will not
be mentioned again. In this case, the initial condition is again taken as a draw from the prior N (mq,Cp)
as in p7.m, and the initial mean estimate is taken again as mg ~ N(0,100I) so that the code may test the
ability of the filter to lock onto the signal given a poor initial estimate. Furthermore, for this problem there
is no need to introduce the stopping criteria present in the case of p8.m since the underlying deterministic
dynamics are dissipative. The output of this program is shown in Figure 23.

clear;set (0, 'defaultaxesfontsize',20); format long
% p9.m 3DVAR Filter, sin map (Ex. 1.3)
setup

o
5
o
S

o° o

N

J=1e3;% number of steps

alpha=2.5;% dynamics determined by alpha
gamma=1;% observational noise variance is gamma”2
sigma=3e—1;% dynamics noise variance is sigma”2
C0=9e—2;% prior initial condition variance

10 m0=0;% prior initial condition mean

11 sd=1l;rng(sd);% Choose random number seed

12

13 m=zeros(J,1l);v=m;y=m; % pre—allocate

14 Vv (1)=mO+sqgrt (CO)*randn; % initial truth

15 m(l)=10*randn;% initial mean/estimate

16 eta=2e—1;% stabilization coefficient 0 < eta << 1
17 c=gamma”2/eta;H=1;% covariance and observation operator
18 K=(c*H"'")/ (HxcxH'+gamma”2) ;% Kalman gain

19

© W N o o«

20 %% solution % assimilate!
21
22 for j=1:J

23 v (j+1)=alpha*sin(v(j)) + sigmaxrandn;% truth
24 v (j)=Hxv (j+1) +tgammarrandn; $ observation

25

26 mhat=alphaxsin(m(j));% estimator predict

27

28 d=y (j)—Hxmhat; % innovation

29 m(Jj+1)=mhat+K+d; % estimator update

30

31 end

32

33 Js=21;% plot truth, mean, standard deviation, observations

34 figure;plot ([0:js—1],v(1l:3s));hold;plot ([0:js—1],m(1l:]s), 'm");

35 plot ([0:js—1],m(1l:Js)+sqgrt(c), 'r—");plot ([1l:]Js—1],y(1l:js—=1), 'kx");
36 plot ([0:js—1],m(l:Js)—sqgrt(c), 'r—");hold;grid;xlabel ('iteration, 7J');
37 title('3DVAR Filter, Ex. 1.3")

38

39 figure;plot ([0:J],c*x[0:J].70);hold

40 plot([0:J],c%x[0:J].70,'m', "Linewidth',2);grid

41 hold;xlabel ('iteration, 7J');

42 title('3DVAR Filter Covariance, Ex. 1.3');

43

44 figure;plot ([0:J], (v—m)."2);hold;

45 plot ([0:J],cumsum((v—m)."2)./[1:J+1]"', 'm"', 'Linewidth',2);grid

46 hold;xlabel('iteration, 7J');

47 title('3DVAR Filter Error, Ex. 1.3")
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4.8.4. pl10.m

The next MATLAB program is p10.m. This program contains an implementation of the extended Kalman
Filter.This program is essentially the same as of p7.m, except with a different forward model. Since the
dynamics are scalar, the observation operator is defined as H= 1 in line 16. The predicting covariance Cj is
not given in closed form as it was for the linear problem p7.m. Instead, as described in section 3.2.2, it is

approximated using the linearization of the forward map around my, in line 26

éj = (acos(m;—1)) Cj—1 (acos(mj_1)).

The poor initial estimate of the distribution in this (in lines 15-16) and subsequent programs is always given
as N(my, C{), where mg, ~ N(0,100I) and Cj; = 10Cy. This will not be iterated again. The output of this

program is shown in Figure 24.

1 clear;set (0, 'defaultaxesfontsize',20); format long

2 %%% plO0.m Extended Kalman Filter, sin map (Ex. 1.3)

3 %% setup

4

5 J=1e3;% number of steps

6 alpha=2.5;% dynamics determined by alpha

7 gamma=1;% observational noise variance is gamma”2

8 sigma=3e—1;% dynamics noise variance is sigma”2

9 C0=9e—2;% prior initial condition wvariance

10 m0=0;% prior initial condition mean

11 sd=l;rng(sd);% Choose random number seed

12

13 m=zeros (J,1l);v=m;y=m;c=m; % pre—allocate

14 Vv (1)=mO+sqgrt (CO)+randn; % initial truth

15 m(l)=10+randn; % initial mean/estimate

16 c(l)=10%«C0;H=1;% initial covariance and observation operator
17

18 %% solution % assimilate!

19

20 for j=1:J

21

22 v(j+l)=alphaxsin(v(j)) + sigmaxrandn;$% truth

23 v (J)=Hxv (j+1) +gammarrandn; $ observation

24

25 mhat=alphax*sin(m(j));% estimator predict

26 chat=alphax*cos (m(]j))*c (j)*alphaxcos(m(j))+sigma”2;% covariance predict
27

28 d=y (j)—H*mhat; % innovation

29 K= (chat*H'") / (Hxchat+H'+gamma"2) ;% Kalman gain

30 m(j+1)=mhat+K+d;$ estimator update

31 c(j+1)=(1—K«H) xchat;% covariance update

32

33 end

34

35 Js=21;% plot truth, mean, standard deviation, observations

36 figure;plot ([0:js—1],v(1l:3s));hold;plot ([0:js—1],m(l:]js), 'm");
37 plot ([0:js—1],m(l:3s)+sgrt(c(l:3s)), 'r—");plot([1l:Js—1],y(l:3s—1), " 'kx");
38 plot ([0:js—1],m(l:Jjs)—sgrt(c(l:Js)), 'r—"');hold;grid;xlabel ('iteration, j');
39 title('ExKF, Ex. 1.3")

40

41 figure;plot ([0:J],c);hold

42 plot ([0:J],cumsum(c)./[1:J+1]"', 'm', 'Linewidth',2);grid

43 hold;xlabel ('iteration, j');

44 title ('ExKF Covariance, Ex. 1.3");

45

46 figure;plot ([0:J], (v—m)."2);hold;

47 plot ([0:J],cumsum((v—m)."2)./[1:J+1]"', 'm', "Linewidth',2);grid
48 hold;xlabel ('iteration, j');

49 title ('ExKF Error, Ex. 1.3")
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4.8.5. pll.m

The program p11.m contains an implementation of the ensemble Kalman Filter, with perturbed observations
(PO) as described in section 3.2.3.The structure of this program is again very similar to p7.m and p10.m,
except now an ensemble of particles, of size N defined in line 12, is retained as an approximation of the
filtering distribution. The ensemble {v(™}N_, represented by the matrix U is then constructed out of draws
from this Gaussian in line 18, and the mean my is reset to the ensemble sample mean.

In line 27 the predicting ensemble {if;n) N_, represented by the matrix Uhat is computed from a realization
of the forward map applied to each ensemble member. This is then used to compute the ensemble sample mean
m; (mhat) and covariance C; (chat). There is now an ensemble of innovations representing the perturbed

observations, with a new i.i.d. realization y](-n) ~ N(y;,T) for each ensemble member, computed in line 31

(n) _, (n) _ s
d;” =y — Huv; .

The Kalman gain K; (K) is computed using (4.11), the same as in p7.m and p10.m and the ensemble of
updates are computed in line 33
o 5 4 Ry,

The output of this program is shown in Figure 25. Furthermore, long simulations of length J = 10° were
performed for this and the previous two programs p9.m and p10.m and their errors are compared in Figure
26.
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clear;set (0, 'defaultaxesfontsize',20); format long
%$%% pll.m Ensemble Kalman Filter (PO), sin map (Ex. 1.3)
%% setup

J=le3;% number of steps

alpha=2.5;% dynamics determined by alpha

gamma=1;% observational noise variance is gamma”2

sigma=3e—1;% dynamics noise variance is sigma’”2

C0=9e—2;% prior initial condition wvariance

m0=0;% prior initial condition mean

sd=1l;rng(sd);% Choose random number seed

N=100; $ number of ensemble members

m=zeros (J, 1) ;v=m; y=m; c=m; U=zeros (J,N) ;% pre—allocate

v (1)=m0+sqgrt (CO) *randn; % initial truth

m(l)=10*randn; % initial mean/estimate

c(1l)=10%C0;H=1;% initial covariance and observation operator
U(1l,:)=m(l)+sgrt(c(l))+*randn(l,N);m(l)=sum(U(1l,:))/N;% initial ensemble

o

%% solution % assimilate!
for j=1:J

v(j+l)=alpha*sin(v(j)) + sigmaxrandn;$% truth

v (j)=Hxv (j+1) +tgammaxrandn; $ observation
Uhat=alpha*sin(U(j, :))+sigma*randn(1l,N);% ensemble predict
mhat=sum (Uhat) /N; $ estimator predict

chat= (Uhat—mhat) » (Uhat—mhat) '/ (N—1);% covariance predict

d=y (j) tgamma*randn (1, N)—HxUhat; % innovation

K= (chat*H'") / (Hxchat+H'+gamma“"2) ;% Kalman gain

U(j+1, :)=Uhat+Kxd; $ ensemble update

m(j+1l)=sum(U(j+1,:))/N;% estimator update
c(J+1)=(U(J+1,:)—m(J+1)) (U (J+1, :)—m(j+1)) '/ (N—1);% covariance update

end

js=21;% plot truth, mean, standard deviation, observations

figure;plot ([0:js—1],v(1l:js));hold;plot ([0:js—1],m(1l:3s), 'm");

plot ([0:js—1],m(1l:]js)+sgrt(c(l:Js)), "'r—");plot ([1l:Js—1],y(l:Js—=1), "kx");
plot ([0:Js—1],m(1l:js)—sqgrt(c(l:Js)), 'r—");hold;grid;xlabel ('iteration, 7J');
title ('EnKF, Ex. 1.3")

figure;plot ([0:J],c);hold

plot ([0:J], cumsum(c) ./ [1:J+1]"', 'm"', 'Linewidth',2);grid
hold;xlabel ('"iteration, j');

title ('EnKF Covariance, Ex. 1.3'");

figure;plot ([0:J], (v—m) . 2) ;hold;
plot ([0:J], cumsum( (v—m) ."2)./[1:J+1]"','m', "Linewidth',2);grid
hold;xlabel ('iteration, J'")

i
title ('EnKF Error, Ex. 1.3")
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4.3.6. pl12.m

The program pl12.m contains a particular square-root filter implementation of the ensemble Kalman filter,
namely the ETKF filter mentioned earlier and described in detail in section 3.2.4. The program thus is
very similar to p11.m for EnKF with perturbed observations. In particular, the filtering distribution of the

state is again approximated by an ensemble of particles. The predicting ensemble {ﬁ§n) N_, (Uhat), mean

mj(mhat), and covariance 6'j (chat) are computed exactly as in p11.m. However, this time the covariance is
kept in factorized form X; X JT = (}; in lines 29-30, with factors denoted Xhat. The transformation matrix is

computed in line 31
1

2

T = (IN + )?J-THTF’IH)?J-)_ :
and X; = X ;T; (X) is computed in line 32, from which the covariance C; = X; X ]T is reconstructed in line
38. A single innovation d; is computed in line 34 and a single updated mean m; is then computed in line
36 using the Kalman gain K; (4.11) computed in line 35. This is the same as in the KF and ExKF of p7.m
and p10.m, in contrast to the EnKF(PO) of p11.m. The ensemble is then updated to U in line 37 using the

formula - -
n n
vyt =m; +X; VN -1,
where Xj(") is the n'" column of X;.

Notice that the operator which is factorized and inverted has dimension IV, which in this case is large in
comparison to the state and observation dimensions. This naturally should be the case for computing sample
statistics, but in practical application it rarely is the case. Indeed the state dimension is usually the largest,
with the observation dimension coming next, and the ensemble size is much smaller than either of these.
This is why the ETKF has become a very popular method. So do not let its relative inefficiency here with
respect to the other filters lead to any misconception. The results are shown in Figure 27.
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clear;set (0, 'defaultaxesfontsize',20); format long
%$%% pl2.m Ensemble Kalman Filter (ETKF), sin map (Ex. 1.3)
%% setup

J=le3;% number of steps

alpha=2.5;% dynamics determined by alpha

gamma=1;% observational noise variance is gamma”2
sigma=3e—1;% dynamics noise variance is sigma’”2

C0=9e—2;% prior initial condition wvariance

m0=0;% prior initial condition mean

sd=1l;rng(sd);% Choose random number seed

N=100; $ number of ensemble members

m=zeros (J, 1) ;v=m; y=m; c=m; U=zeros (J,N) ;% pre—allocate

v (1)=m0+sqgrt (CO) *randn; % initial truth

m(l)=10*randn; % initial mean/estimate

c(1l)=10%C0;H=1;% initial covariance and observation operator
U(1l,:)=m(l)+sgrt(c(l))+*randn(l,N);m(l)=sum(U(1l,:))/N;% initial ensemble

o

%% solution % assimilate!
for j=1:J

v(j+l)=alpha*sin(v(j)) + sigmaxrandn;$% truth
v (j)=Hxv (j+1) +tgammaxrandn; $ observation

Uhat=alpha*sin(U(j, :))+sigma*randn(1l,N);% ensemble predict

mhat=sum (Uhat) /N; $ estimator predict

Xhat= (Uhat—mhat) /sqrt (N—1) ;% centered ensemble

chat=Xhat+Xhat';% covariance predict

T=sgrtm(inv (eye (N) +Xhat '+H'+H+Xhat/gamma“"2)) ;% right—hand square—root transform
X=Xhat*T;% transformed centered ensemble

d=y (j)—H*mhat; randn(1,N);% innovation

K= (chat«H') / (Hxchat+H'+gamma“~2) ;% Kalman gain
m(j+1)=mhat+Kxd; % estimator update

U(j+1, :)=m(j+1) +X*sqgrt (N—1);% ensemble update
c(Jj+1)=XxX';% covariance update

end

js=21;% plot truth, mean, standard deviation, observations

figure;plot ([0:Js—1]1,v(l:Js));hold;plot ([0:Js—1],m(l:3s), 'm");

plot ([0:Js—1],m(1l:js)+sgrt(c(l:Js)), 'r—");plot ([1l:Js—1],y(l:js—1), "kx");
plot ([0:js—1],m(1l:3js)—sgrt(c(l:Js)), 'r—"');hold;grid;xlabel ('iteration, j');
title ("EnKF (ETKF), Ex. 1.3");

figure;plot ([0:J],c);hold

plot ([0:J], cumsum(c) ./ [1:J+1]"', 'm', 'Linewidth',2);grid
hold;xlabel ('iteration, j'");

title ('EnKF (ETKF) Covariance, Ex. 1.3");

figure;plot ([0:J], (v—m) . 2);hold;

plot ([0:J],cumsum( (v—m)."2)./[1:J+1]"', 'm', 'Linewidth',2);grid
hold;xlabel ('iteration, j');

title ('EnKF (ETKF) Error, Ex. 1.3")
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4.3.7. pl13.m

The program p13.m is an implementation of the standard sequential importance resampling algorithm from
section 3.3.2, described in detail in section 3.3.

The setup section is almost identical to the EnKF methods, because this methods also relies on particle
approximations of the filtering distribution. However, this method consistently estimates even non-Gaussian
distributions. The truth and data generation and ensemble prediction in lines 24-27 are the same as in p11.m

and p12.m. The way this prediction in line 27 is phrased in section 3.3.2 is ﬁj(n) ~ P(~|v§@1). An ensemble
of innovations {dg.")},]yzl are required again, but all using the same observation, as computed in line 28.

Assuming w(ﬁ)l = 1/N, then
2
1"} ’

J
~(n n 1 n
wj( ) x ]P’(yj\vj(- )) o< exp {—2 ‘dg )
h particle, as given in (3.21). The vector of un-normalized weights

where d§") is the innovation of the n!

{@;n)}ﬁle (what) are computed in line 29 and normalized to {wﬁn)}ﬁf:l (w) in line 30. Lines 32-39 implement
the resampling step. First, the cumulative distribution function of the weights W € [0, 1] (ws) is computed
in line 32. Notice W has the properties that Wy = w§1), Wn < Wyi1, and Wy = 1. Then N uniform random

numbers {u(™}N_, are drawn. For each u(™, let n* be such that W,._; < u(™ < W,,.. This corresponds

th element from the discrete measure defined by {w§")}nN=1. Therefore, this n* (ix) is

found in line 34, and the n'" particle UJ(»”) (U(j+1,n)) is set to be equal to ﬁj(n*) (Uhat (ix)) in line 37. find
function! The sample mean and covariance are then computed in lines 41-42. The rest of the program follows

the others, generating the output displayed in Figure 28.

to drawing the (n*)
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clear;set (0, 'defaultaxesfontsize',20); format long
%$%% pl3.m Particle Filter (SIRS), sin map (Ex. 1.3)
%% setup

J=le3;% number of steps

alpha=2.5;% dynamics determined by alpha

gamma=1;% observational noise variance is gamma”2

sigma=3e—1;% dynamics noise variance is sigma’”2

C0=9e—2;% prior initial condition wvariance

m0=0;% prior initial condition mean

sd=1l;rng(sd);% Choose random number seed

N=100; $ number of ensemble members

m=zeros (J, 1) ;v=m; y=m; c=m; U=zeros (J,N) ;% pre—allocate

v (1)=m0+sqgrt (CO) *randn; % initial truth

m(l)=10*randn; % initial mean/estimate

c(1l)=10xC0;H=1;% initial covariance and observation operator
U(1l,:)=m(l)+sgrt(c(l))+*randn(l,N);m(l)=sum(U(1l,:))/N;% initial ensemble

%% solution % Assimilate!
for j=1:J

v(j+l)=alpha*sin(v(j)) + sigmaxrandn;$% truth
v (j)=Hxv (j+1) +tgammaxrandn; $ observation
Uhat=alpha*sin(U(j, :))+sigma*randn(1l,N);% ensemble predict
d=y (j)—H*Uhat;% ensemble innovation
what=exp (—1/2x (1/gamma”2xd."2));% weight update
w=what/sum(what) ; $ normalize predict weights
ws=cumsum (w) ; $ resample: compute cdf of weights
for n=1:N
ix=find(ws>rand, 1, 'first');% resample: draw rand \sim U[0,1] and
find the index of the particle corresponding to the first time
the cdf of the weights exceeds rand.
U(j+1,n)=Uhat (ix) ;% resample: reset the nth particle to the one
% with the given index above
end

o° oP

m(j+1)=sum(U(j+1,:)) /N

;% estimator update
c(3+1)=(U(3+1, :)—m(J+1))

*(U(3+1,:)—m(3+1))'/N; % covariance update
end

js=21;% plot truth, mean, standard deviation, observations

figure;plot ([0:Js—1],v(l:Js));hold;plot ([0:Js—1],m(1l:3s), 'm");

plot ([0:js—1],m(1l:js)+sgrt(c(l:Js)), "'r—");plot ([1l:Js—1],y(l:js=1), "kx");
plot ([0:Js—1],m(1l:js)—sqgrt(c(l:Js)), 'r—");hold;grid;xlabel ('iteration, 7J');
title('Particle Filter (Standard), Ex. 1.3');

figure;plot ([0:J],c);hold

plot ([0:J], cumsum(c) ./ [1:J+1]"', 'm', 'Linewidth',2);grid
hold;xlabel ('iteration, j");

title('Particle Filter (Standard) Covariance, Ex. 1.3");

figure;plot ([0:J], (v—m) . 2) ;hold;
plot ([0:J], cumsum( (v—m) ."2)./[1:J+1]"', 'm', "Linewidth',2);grid
hold;xlabel ('iteration, j');title('Particle Filter (Standard) Error, Ex. 1.3")
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4.3.8. plj.m

The program p14.mis an implementation of the optimal proposal sequential importance resampling algorithm
from section 3.3.3. The setup section and truth and observation generation are again the same as in the
previous programs.

The difference of this particle filter arises arises because the importance sampling proposal kernel (); with

density P(vj|vj_1,y;) is used to sample 6;”) given vlgi)l, rather than the kernel P with density P(v;|v;_1).

Observe that if 03(»71)1 and y; are both fixed, then P ('Uj|'U§»11)1, yj) is the density of the Gaussian with mean

m/(") and covariance ¥’ given by

m = (27w (o) + BTy ), () =S BT

Therefore, ¥’ (Sig) and the ensemble of means {m’ (")}i]:l (vector em) are computed in lines 27 and 28 and

N
used to sample @(ﬁ) ~ N(m/™ %) in line 29 for all of {ﬁ;")}

n=

(Uhat).
1
Now the weights are therefore updated by (3.28) rather than (3.21), i.e. assuming w(")1 =1/N, then

ik
@ﬁ.") x P (yj|v§-71)1) X €xp {_; ‘yj -V <Uﬂ@1> ‘;2} '

This is computed in lines 31-32, using an auxiliary ”innovation” vector d in line 31. Notice that this is not the
same innovation as in the other programs. Lines 35-45 are again identical to lines 32-42 of program p13.m,
performing the resampling step and computing sample mean and covariance.

The output of this program was used to produce Figure 29 similar to the other filtering algorithms.
Furthermore, long simulations of length J = 10° were performed for this and the previous three programs
pll.m, p12.m and p13.m and their errors are compared in Figure 26.
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clear;set (0, 'defaultaxesfontsize',20); format long
%$%% pld4.m Particle Filter (SIRS, OP), sin map (Ex. 1.3)
%% setup

J=le3;% number of steps

alpha=2.5;% dynamics determined by alpha

gamma=1;% observational noise variance is gamma”2

sigma=3e—1;% dynamics noise variance is sigma’”2

C0=9e—2;% prior initial condition wvariance

m0=0;% prior initial condition mean

sd=1l;rng(sd);% Choose random number seed

N=100; $ number of ensemble members

m=zeros (J, 1) ;v=m; y=m; c=m; U=zeros (J,N) ;% pre—allocate

v (1)=m0+sqgrt (CO) *randn; % initial truth

m(l)=10*randn; % initial mean/estimate

c(1l)=10xC0;H=1;% initial covariance and observation operator
U(1l,:)=m(l)+sgrt(c(l))+*randn(l,N);m(l)=sum(U(1l,:))/N;% initial ensemble

%% solution % Assimilate!
for j=1:J

v(j+l)=alpha*sin(v(j)) + sigmaxrandn;$% truth
v (j)=Hxv (j+1) +tgammaxrandn; $ observation

Sig=inv (inv(sigma”2)+H'*inv (gamma”2) xH) ;% optimal proposal covariance
em=Sig* (inv (sigma”2) xalpha*sin(U(j, :))+H'+xinv (gamma"2) *xy (j)) ;% optimal proposal mean
Uhat=em+sqgrt (Sig) xrandn(1,N) ;% ensemble optimally importance sampled

d=y (j)—Hxalphaxsin(U(j,:));% ensemble innovation
what=exp (—1/2/ (sigma”2+gamma”2) *xd."2); $ weight update
w=what /sum (what) ;% normalize predict weights
ws=cumsum(w) ; $ resample: compute cdf of weights
for n=1:N
ix=find(ws>rand, 1, 'first');% resample: draw rand \sim U[0,1] and
find the index of the particle corresponding to the first time
the cdf of the weights exceeds rand.
(j+1,n)=Uhat (ix) ;% resample: reset the nth particle to the one
% with the given index above
end

oo e

[

m(j+1)=sum(U(3+1,:))/N

;% estimator update
c(j+1)=(U(J+1,:)—m(j+1))

* (U(J+1,:)—m(J+1))'/N; % covariance update
end

js=21; %$plot truth, mean, standard deviation, observations

figure;plot ([0:js—1],v(l:js));hold;plot ([0:js—1],m(1l:3s), 'm");

plot ([0:3s—1],m(1l:Js)+sqgrt(c(l:3s)), 'r—");plot ([1:Js—1],y(l:3s—1), 'kx");
plot ([0:js—1],m(l:3js)—sgrt(c(l:Js)), 'r—"');hold;grid;xlabel ('iteration, j');
title('Particle Filter (Optimal), Ex. 1.3");

figure;plot ([0:J],c);hold

plot ([0:J], cumsum(c) ./ [1:J+1]"', 'm"', 'Linewidth',2);grid
hold;xlabel ('iteration, j'");

title('Particle Filter (Optimal) Covariance, Ex. 1.3");

figure;plot ([0:J], (v—m)."
plot ([0:J], cumsum ( (v—m) . "~
hold;xlabel ('iteration, j
title('Particle Filter (Op

) ;hold;

)./ [1:J+11", 'm', "Linewidth',2) ;grid
)i

timal) Error, Ex. 1.3")
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