Home > Publications > Refereed Journals > On the Static Loop Modes in the Marching-on-in-Time Solution of the Time-Domain Electric Field Integral Equation
Publications

On the Static Loop Modes in the Marching-on-in-Time Solution of the Time-Domain Electric Field Integral Equation

Bibliography:

Y. Shi, H. Bagci, and M. Lu, "On the Static Loop Modes in the Marching-on-in-Time Solution of the Time-Domain Electric Field Integral Equation", Antennas and Wireless Propagation Letters, IEEE  (Volume:13 ), 317 - 320, 2014.

Authors:

Y. Shi, H. Bagci, and M. Lu,

Keywords:

Electric field integral equation, marching-on-in- time, numerical analysis, static loop modes, time domain

Year:

2014

Abstract:

When marching-on-in-time (MOT) method is applied to solve the time-domain electric field integral equation, spurious internal resonant and static loop modes are always observed in the solution. The internal resonant modes have recently been studied by the authors; this letter investigates the static loop modes. Like internal resonant modes, static loop modes, in theory, should not be observed in the MOT solution since they do not satisfy the zero initial conditions; their appearance is attributed to numerical errors. It is discussed in this letter that the dependence of spurious static loop modes on numerical errors is substantially different from that of spurious internal resonant modes. More specifically, when Rao-Wilton-Glisson functions and Lagrange interpolation functions are used as spatial and temporal basis functions, respectively, errors due to space-time discretization have no discernible impact on spurious static loop modes. Numerical experiments indeed support this discussion and demonstrate that the numerical errors due to the approximate solution of the MOT matrix system have dominant impact on spurious static loop modes in the MOT solution.

ISSN:

1536-1225