Secure Communications over Wireless Networks
Even 1-Bit Feedback Helps to Achieve Secrecy

Zouheir Rezki

Computer, Electrical and Mathematical Sciences & Engineering Division
King Abdullah University of Science and Technology (KAUST)
Thuwal, Mekkah Province, Saudi Arabia
zouheir.rezki@kaust.edu.sa

January 6, 2016
Outline

✔ Introduction
✔ Motivation
✔ System Model
✔ Capacity Results
✔ Asymptotic Analysis
✔ Conclusion
✔ Future Research Directions
With the tremendous progress of wireless communication technologies, security is a natural concern that could be related to ethical, social, or financial issues.

Security is a critical issue in most military applications.

Security is critical in many civilian applications: Credit card transactions, banking related data communications.

Adversary attacks: Gain unauthorized access to and modify the information, or even disrupt the information flows.

Therefore, the ability to share secret information reliably in presence of adversaries is extremely important.
Traditionally, security has been addressed above the physical layer, through cryptographic encryption.

Symmetric Cryptographic Technique.

- Alice and Bob share a common private key.
- Message is encrypted using the key and Alice and Bob can decipher the message.
- Even if the message is intercepted, no key, no deciphered message.
- If these two users do not have this private key, a secure channel is required for the key exchange.
Limitations of Existing Techniques

✔ However, with the emergence of adhoc and decentralized networks, such encryption techniques are complex and difficult to implement.

✔ Dedicated secure channels are very expensive.

✔ Vulnerability to adversary attacks: Eavesdropping, denial-of-service (DOS), intrusion, message modification, localization through traffic analysis, etc.

✔ Security level relies on computation limitations of the adversary: cloud computing, quantum computers may compromise security.
Introducing physical layer security as a new approach to achieve secure communications is a potential opportunity to complement and significantly improve security of wireless networks.

The principle behind wireless physical layer security relies on exploiting the characteristics of the wireless channel, such as fading or noise, to provide secrecy for wireless transmissions.

Instead of using a dedicated channel for key exchange, PLS provides tools to distribute secret keys or to transmit secret messages by exploiting the randomness of the channel (noise, fading).

Once a key is shared, upper-layer security algorithms can finish the job (one-time pad encryption).
Alice is communicating with Bob through a fading channel h.
Bob is listening to their communication through another fading g.
h and g are constant over each coherence block (block fading model) and we can code over many such coherence blocks (delay-tolerant applications).
The average noise level on both channels is the same.
The average channel gain power of both channels is the same.
Alice and Bob know h perfectly; Eve is a super-listener and thus knows both h and g.
In this case, secure communication can be guaranteed at the PL and the capacity is known.
Perfect CSI is a bit too strong assumption.

Quantized side information is a step forward to deploy PLS in practical systems.

The role of feedback on fading channels without secrecy constraint has been widely studied, e.g., [Jindal, IT-06; Kim & Skoglund, TW-07; Love et al., JSAC-08].

Feedback is incorporated in most emerging wireless standards.

We are curious to understand how (already deployed) feedback mechanisms can help to enhance security of existing systems.
Consider a discrete-time memoryless wire-tap channel: a transmitter, a legitimate receiver and an eavesdropper.

Each terminal is equipped with a single antenna.

At time coherence period i, $i = 1, \ldots, L$, we have

$$
\begin{align*}
Y(i,j) &= h(i) \ X(i,j) + U(i,j) \\
Z(i,j) &= g(i) \ X(i,j) + V(i,j),
\end{align*}
$$

where $j = 1, \ldots, m$, with m representing the number of symbols in each coherence block. Average power constraint: $\mathbb{E}[|x(i,j)|^2] \leq P_{avg}$.

h and g are i.i.d., with bounded and continuous PDF.

Legitimate Rx knows $h(i)$’s, eavesdropper Rx knows both $h(i)$’s and $g(i)$’s.

Transmitter only knows statistic CSI and is given q-bit feedback at the beginning (or at the end) of each coherence block, through an error-free feedback channel with limited capacity that is available to Alice and tracked by Eve.
Theorem 1. Let $\Pi^{(N)}$ be the set of all discrete power policies $\{P_k\}_{k=1}^N$ that satisfy the STPC (resp. LTPC). Let $\Theta^{(N)}$ be the set of all reconstruction points $\{\tau_k \mid 0 \leq \tau_1 \leq \ldots \leq \tau_N\}_{k=1}^N$ describing γ_h. For the discrete-time memoryless channel described by (1), with an error-free q-bit feedback link at the beginning of each coherence block, the following rates are achievable:

$$R_1 = \max_{\{P_k\}_{k=1}^N \in \Pi^{(N)} \atop \{\tau_k\}_{k=1}^N \in \Theta^{(N)}} \sum_{k=1}^N \Pr\{\tau_k \leq \gamma_h < \tau_{k+1}\} \cdot \mathbb{E}_{\gamma_g} \left[\log \left(\frac{1 + \tau_k P_k}{1 + \gamma_g P_k} \right) \right]$$

$$R_2 = \max_{\{P_k\}_{k=1}^N \in \Pi^{(N)} \atop \{\tau_k\}_{k=1}^N \in \Theta^{(N)}} \sum_{k=1}^N \Pr\{\tau_k \leq \gamma_h < \tau_{k+1}\} \mathbb{E}_{\gamma_h, \gamma_g} \left[\log \left(\frac{1 + \gamma_h P_k}{1 + \gamma_g P_k} \right) \right] \in [\tau_k, \tau_{k+1}]$$,

where for convenience, we set $\tau_{N+1} = \infty$.
Proof: Achievability of R_{-1}

✓ \{0 = R_0 \leq R_1 \leq R_2, \ldots \leq R_N\} selected in advance.
✓ $\Delta_p = \Pr(R_p \leq \log(1 + P|h|^2) < R_{p+1})$ for $p = 0, \ldots, N - 1$.
✓ We establish that $R_s = \sum_{p=0}^{N-1} \Delta_p E[R_p - \log(1 + |g|^2 P)]^+ + \epsilon$ is achievable.
✓ Let $R = \sum_{p=0}^{N-1} \Delta_p R_p - 2\epsilon$.
✓ We uniformly partition all 2^{nR} sequences of length nR into 2^{nR_s} bins, $n = mL$.
✓ To transmit W, select the corresponding bin index and choose a binary sequence v uniformly at random from all of the sequences in that bin.
✓ In each coherence block of length m, we transmit $m \cdot R_p$ information bits using a Gaussian codebook.
✓ By weak law of large numbers, when $L \gg 1$, the entire v is transmitted with high probability.
✓ Since in each block $R_p \leq \log(1 + |h|^2 P)$ holds, the receiver can decode the sequence v with high probability.
Secrecy Analysis:

\[nR_e \geq H(X^n|Z^n, h^L, g^L) - H(X^n|Z^n, h^L, g^L, W) \]

\[\geq \sum_{i=1}^{L} m[R_i - \log(1 + |g_i|^2 P)]^+ - H(X^n|Z^n, h^L, g^L, W) \]

where (2) follows from \(X(1), X(2), \ldots X(L) \) is independent sequence and from the analysis of a Gaussian wiretap code.

By W.L.L.N., we have:

\[\frac{1}{L} \sum_{i=1}^{L} [R_i - \log(1 + |g_i|^2 P)]^+ \xrightarrow{L \to \infty} \sum_{p=0}^{N-1} \Delta_p E[R_i - \log(1 + |g|^2 P)]^+. \]

By a list decoding argument, we show that \(H(X^n|Z^n, h^L, g^L, W) \leq n\epsilon. \)
Achievability of R_{-2}

✔ Think of feedback as a deterministic mapping: $\kappa (\gamma_h) = k$ if $\gamma_h \in [\tau_k, \tau_{k+1})$.

✔ Construct a new main channel with output $\tilde{Y}(i, j) = \tilde{h}(i) X(i, j) + U(i, j)$, where $\tilde{h}(i) = \sqrt{P (\kappa (\gamma_h (i)))} h(i)$.

✔ This is a specific use of CSI-T and thus the capacity of the new channel is not higher than the original one.

✔ The new channel has no CSI-T and perfect CSI-R at the legitimate receiver.

✔ The rate R_{-2} follows then from [C&K, IT-78] by taking $V = X \sim \mathcal{CN}(0, 1)$.

✔ With this choice, the rate $\left[I \left(X; \tilde{Y}, \tilde{h} \right) - I \left(X; Z, \tilde{h}, g \right) \right]$ is achievable.

✔ Evaluating the above rate and maximizing over all P_k’s and τ_k’s subject to the power constraint completes the proof.
Theorem 2. Let \(\Pi^{(N)}_{(0)} \) be the set of all power policies \(\{P_k\}_{k=0}^{N} \) that satisfy the STPC (resp. LTPC). Let \(\Theta^{(N)}_{(0)} \) be the set of all reconstruction points \(\{\tau_k \mid 0 = \tau_0 \leq \tau_1 \leq \ldots \leq \tau_N\}_{k=0}^{N} \) describing \(\gamma_h \). For the discrete-time memoryless channel described by (1), with an error-free \(q \)-bit feedback link at the beginning of each coherence block, an upper bound on the secrecy capacity is given by:

\[
R_+ = \max_{\{P_k\}_{k=0}^{N} \in \Pi^{(N)}_{(0)}, \{\tau_k\}_{k=0}^{N} \in \Theta^{(N)}_{(0)}} \sum_{k=0}^{N} \text{Pr}\{\tau_k \leq \gamma_h < \tau_{k+1}\} \mathbb{E}_{\gamma_h, \gamma_g} \left[\log \left(\frac{1 + \gamma_h P_k}{1 + \gamma_g P_k} \right) \right]^+ \bigg| \gamma_h \in [\tau_k, \tau_{k+1}] ,
\]

where for convenience, we set \(\tau_{N+1} = \infty \). Furthermore, \(R_- \) in Theorem 1 coincides with \(R_+ \) as \(N \to \infty \).
Proof of the Upper Bound:

✔ We assume that the transmitter has CSI $u_i = \kappa(h_i)$ at time instant i, whereas the legitimate receiver knows $\gamma_{h,i}$.

✔ We upper bound the equivocation rate as follows:

\begin{align*}
n R_e &= H(W \mid Z^n, h^L, g^L) \\
 &= H(W \mid Z^n, h^L, g^L, u^L) \\
 &\leq \sum_{i=1}^{n} I(X_i \mid Y_i \mid Z_i, h_i, g_i, u^L) + n \delta_n \\
 \leq \sum_{i=1}^{n} \mathbb{E} \left[\log \left(\frac{1 + \gamma_{h,i} P_i(u^i)}{1 + \gamma_{g,i} P_i(u^i)} \right) \right] + n \delta_n,
\end{align*}

(4) \hspace{1cm} (5) \hspace{1cm} (6) \hspace{1cm} (7)

✔ Then we prove that the above upper bound is maximized by a power allocation $P_i(u^i) = \lambda(u_i)$, a time-invariant function of u_i only.

✔ It remains to show that the lower and the upper bounds coincide as $N \to \infty$.

✔ Choose $\tau_k = (F_{\gamma_h}(\tau_{k+1}) - F_{\gamma_h}(\tau_k)) = \frac{1}{N}$ and let $N \to \infty$ completes the proof.
Theorem 3. A lower bound on the secrecy capacity of the discrete-time memoryless channel described by (1), with an error-free 1-bit ARQ feedback at the end of each coherence block, is given by:

\[
R_{-\rightarrow} = \max_{\{P\} \in \Pi^{(1)}} \max_{\{\tau\} \in \Theta^{(1)}} \theta^2 \cdot \mathbb{E}_{\gamma_g} \left[\log \left(\frac{1 + \tau P}{1 + \gamma_g P} \right) \right]^+,
\]

where \(\theta \) is the probability of success defined by \(\theta = Pr\{\gamma_h \geq \tau\} \). The upper bound in (3), with \(N = 1 \), still holds.

- Alice keeps retransmitting the same block until she gets an ACK.
- Repetition leaks information to the eavesdropper.
- Worst case scenario: All repeated blocks are revealed to the eavesdropper.
Proof of Th. 3:

✔ Reliability is guaranteed by a random coding argument.

✔ For secrecy analysis:

\[n R_e = H(W \mid Z^n, h^L, g^L, s^L) \]
\[\geq I(W; X^{mL_0} \mid Z^n, h^L, g^L, s^L) \]
\[= h(X^{mL_0} \mid Z^n, h^L, g^L, s^L) - h(X^{mL_0} \mid W, Z^n, h^L, g^L, s^L) \]
\[= h(X^{mL_0} \mid Z^{mL_0}, h^{L_0}, g^{L_0}) - h(X^{mL_0} \mid W, Z^n, h^L, g^L, s^L) \]
\[\geq \sum_{i=1}^{L_0} m \left\{ [R - \epsilon - \log(1 + \gamma_g (i) P)]^+ \right\} - h(X^{mL_0} \mid W, Z^n, h^L, g^L, s^L) \]

where \(L_0 \) is the number of blocks that have not been repeated.

✔ By a list decoding argument, the second term in (13) is vanishing.

✔ As \(L_0 \to \infty \), \(\frac{L_0}{L} \) can be computed as follows:

\[\lim_{L_0 \to \infty} \frac{L_0}{L} = \lim_{L_0 \to \infty} \frac{1}{L} \sum_{i=1}^{L} 1_i \]
\[= \mathrm{Pr}\{\text{no repetition}\} \]
\[= \mathrm{Pr}\{\text{blocks } i \text{ and } (i-1) \text{ not repeated, } \forall i \geq 2\} \]
\[= \Pr(\text{success})^2. \]
The rate in Th. 3 only accounts for the contribution of the blocks that have not been repeated into the secrecy rate. It can be immediately improved by accounting for the contribution of the blocks that have been repeated more than once into the secrecy rate.

Corollary 1. A lower bound on the secrecy capacity of the discrete-time memoryless channel described by (1), with an error-free 1-bit ARQ feedback at the end of each coherence block, is given by:

\[
R_{-+}^{\pm} = \max_{\{P\} \in \Pi^{(1)}} \left\{ \theta^2 \mathbb{E}_{\gamma_g} \left[\log \left(\frac{1 + \tau P}{1 + \gamma_g P} \right) \right]^+ \right\}
\]

\[
+ \theta^2 (1 - \theta) \mathbb{E}_{\gamma_g^{(2)}} \left[\log \left(\frac{1 + \tau P}{1 + \gamma_g^{(2)} P} \right) \right]^+ \right\}, \quad (15)
\]

where \(\gamma_g^{(2)}\) is a random variable distributed as the sum of two independent \(\gamma_g\)'s.
Proof of Corollary. 1:

We only outline the secrecy analysis.

\[
\begin{align*}
 n R_e & \geq h(X^{mL_0}, X^{mL_1} \mid Z^n, h^L, g^L, s^L) \\
 & - h(X^{mL_0}, X^{mL_1} \mid W, Z^n, h^L, g^L, s^L) \tag{16} \\
 & = h(X^{mL_0} \mid Z^n, h^L, g^L, s^L) \\
 & + h(X^{mL_1} \mid Z^n, h^L, g^L, s^L, X^{mL_0}) \\
 & - h(X^{mL_0}, X^{mL_1} \mid W, Z^n, h^L, g^L, s^L) \tag{17} \\
 & = h(X^{mL_0} \mid Z^{mL_0}, h^{L_0}, g^{L_0}) \\
 & + h(X^{mL_1} \mid Z^{2mL_1}, h^{2L_1}, g^{2L_1}) \\
 & - h(X^{mL_0}, X^{mL_1} \mid W, Z^n, h^L, g^L, s^L) \tag{18} \\
 \geq \sum_{i=1}^{L_0} \left\{ [R - \epsilon - \log (1 + \gamma_g(i) P)]^+ \right\} \\
 & + \sum_{i=1}^{L_1} \left\{ [R - \epsilon - \log (1 + \gamma_g^{(2)}(i) P)]^+ \right\} \\
 & - h(X^{mL_0}, X^{mL_1} \mid W, Z^n, h^L, g^L, s^L) , \quad \tag{19}
\end{align*}
\]
Proof of Corollary. 1 (cont’d.):

✔ To obtain (19), we expand the first term in (18) exactly as in the case of no repetition.

✔ The second term in (18) is obtained as follows:

\[
\begin{align*}
& h \left(X^{mL_1} \mid Z^{2mL_1}, h^{2L_1}, g^{2L_1} \right) \\
& = \sum_{\text{blocks } i \text{ repeated once}} h \left(X^m(i) \mid Z^m(i), Z^m(i + 1), h(i), h(i + 1), g(i), g(i + 1) \right) \\
& = \sum_{\text{blocks } i \text{ repeated once}} \left[h \left(X^m(i) \right) - I \left(X^m(i); Z^m(i), Z^m(i + 1), h(i), h(i + 1), g(i), g(i + 1) \right) \right]^+ \\
& = \sum_{\text{blocks } i \text{ repeated once}} \left[h \left(X^m(i) \right) - I \left(X^m(i); Z^m(i), Z^m(i + 1) \mid h(i), h(i + 1), g(i), g(i + 1) \right) \right]^+ \\
& \geq \sum_{i=1}^{L_1} \left\{ m \left[R - \epsilon - \log \left(1 + \gamma_g^{(2)} P \right) \right]^+ \right\},
\end{align*}
\]

✔ The third term on the RHS of (19) can be made arbitrary small using a list decoding argument.

✔ As $L_0 \to \infty$ and $L_1 \to \infty$, $\frac{L_0}{L} \to \theta^2$ and $\frac{L_1}{L} \to \theta^2 (1 - \theta) = \Pr \{ \text{blocks } i \text{ and } (i - 2) \text{ are not repeated and } (i - 1) \text{ repeated} \}$
The previous results hold for both short term power constraint (STPC) and long term power constraint (LTPC).

\[
\text{STPC: } \mathbb{E} \left[\frac{1}{m} \sum_{j=1}^{m} |X(i,j)|^2 \right] \leq P_{\text{max}}.
\]

\[
\text{LTPC: } \mathbb{E} \left[\frac{1}{L} \sum_{i=1}^{L} \frac{1}{m} \sum_{j=1}^{m} |X(i,j)|^2 \right] \leq P_{\text{max}}.
\]

Next, we only focus on LTPC.

Consider, for instance, the rate \(R_{-1} \). We formulate the problem as:

\[
\bar{P}_1 : \begin{cases}
\max_{0 \leq \tau_1 \leq \ldots \leq \tau_N} \sum_{k=1}^{N} \Pr \{ \tau_k \leq \gamma h < \tau_{k+1} \} \cdot \mathbb{E}_{\gamma} \left[\log \left(\frac{1+\tau_k P_k}{1+\gamma \rho g P_k} \right) \right]^+ \\
\text{s.t. } \sum_{k=1}^{N} \Pr \{ \tau_k \leq \gamma h < \tau_{k+1} \} P_k \leq P_{\text{max}},
\end{cases}
\] (24)

\(\bar{P}_1 \) is convex in \(P_k \)'s, not convex in \(\tau_k \)'s and hence is non-convex.

The KKT conditions provide necessary conditions.

Note that there is no loss of optimality by taking \(0 < \tau_1 \ldots < \tau_N \).

it can be shown that the power constraint is satisfied with equality.
We present below an iterative algorithm that attempts to find the optimal solution using the KKT conditions.

Initialize \(i = 0, \ P_k^{(0)} = P_{max}, \ \forall \ i, \ \text{set} \ \mu^{(0)} \ \text{arbitrarily}; \)

Repeat:

Fix \(\{P_k^{(i)}\} \) and \(\mu^{(i)} \), solve for \(\{\tau_{k}^{(i)}\} \) using KKT;

Compute \(R^i \);

Fix \(\{\tau_{k}^{(i)}\} \), find \(\{P_k^{(i+1)}\} \) and \(\mu^{(i+1)} \) using KKT;

\(i \leftarrow i + 1; \)

Until Convergence: \(\frac{R_{k}^{(i+1)} - R_{k}^{(i)}}{R_{k}^{(i+1)}} \leq \epsilon; \)
Corollary 2. At high-SNR \((P_{\text{max}} \to \infty)\), the secrecy capacity is bounded, i.e., does not grow with \(P_{\text{max}}\). Furthermore, the following rates are achievable:

\[
R_{-1}^\infty = \max_{0 \leq \tau_1 \leq \cdots \leq \tau_N} \sum_{k=1}^{N} \Pr\{\tau_k \leq \gamma_h < \tau_{k+1}\} \cdot \mathbb{E}_{\gamma_g} \left[\log \left(\frac{\tau_k}{\gamma_g} \right)^+ \right]
\]

\[
R_{-2}^\infty = \max_{\tau \geq 0} \mathbb{E}_{\gamma_h \geq \gamma_g} \left[\log \left(\frac{\gamma_h}{\gamma_g} \right) \right].
\]

An upper bound on the secrecy capacity is given by:

\[
R_{+}^\infty = \mathbb{E}_{\gamma_h, \gamma_g} \left[\log \left(\frac{\gamma_h}{\gamma_g} \right)^+ \right].
\]

✔ At high-SNR, likewise without secrecy constraint, power adaptation does not provide any additional capacity gain under secrecy constraint.
✔ STPC and LTPC have the same asymptotic behavior.
At low-SNR, power adaptation drastically increases the achievable secrecy rate.

More interestingly, under LTPC, the secrecy capacity is asymptotically equal to the capacity as if there is no secrecy constraint, for fading channels with unbounded support.

Moreover, 1-bit feedback is enough to achieve this capacity.

Theorem 4. For fading channels with infinite support, the secrecy capacity at low-SNR, $C_s(P_{max})$, of the channel described by (1), with an error-free q-bit feedback link at the beginning of each coherence block is given by:

$$C_s(P_{max})^0 \approx C_{w.s}(P_{max}),$$

where $C_{w.s}(\cdot)$ stands for the capacity of the main channel without secrecy constraint and with perfect CSI at both the transmitter (CSI-T) and the receiver (CSI-R). Furthermore, 1-bit feedback at the beginning of each coherence block is enough to achieve this capacity.
Recall that with no CSI-T, the secrecy capacity is equal to zero.

Theorem 4 highlights the fact that even with 1-bit feedback, not only one can achieve secrecy at low-SNR, but this secrecy is obtained “for free”.

Nevertheless, we still need a wiretap code to bin the secret message.

The encoding scheme related to R_{-2} exploits the advantage that the legitimate receiver has over the eavesdropper through the feedback link: If the main channel is “good”, it is more unlikely that the eavesdropper's channel be better.

While this scheme is not the best strategy at an arbitrary P_{max}, it is enough to achieve the secrecy capacity at asymptotically low-SNR.

Th. 4 holds if the main channel fading has an infinite support, otherwise it does not (proof via a counter example).
Consider fading channels with PDF defined on \([0, a]\) by:
\[f_{\gamma_h}(x) = f_{\gamma_g}(x) = \frac{1}{a}. \]

The capacity of the main channel can be evaluated as:

\[
C_{w.s}(P_{\text{max}}) = -1 - \frac{1}{W(-e^{-1-aP_{\text{max}}})} + \log \left(-W \left(-e^{-1-aP_{\text{max}}} \right) \right) \tag{29}
\]

\[
= aP_{\text{max}} + o(P_{\text{max}}) \tag{30}
\]

Next, we show that the secrecy capacity of this channel is at most asymptotically equal to \(\frac{a}{2}P_{\text{max}}\).

We upper-bound the secrecy capacity with perfect main CSI to obtain:

\[
R_{++} \leq \mathbb{E}_{\gamma_g} \left[\log \left(\frac{1 + aP_{\text{max}}}{1 + \gamma_g P_{\text{max}}} \right) \right] \tag{31}
\]

\[
\approx P_{\text{max}} \mathbb{E}_{\gamma_g} \left[a - \gamma_g \right] \tag{32}
\]

\[
= \frac{a}{2} P_{\text{max}}. \tag{33}
\]
Numerical Results

Figure 1: Achievable rates and the upper bound under STPC, for Rayleigh fading channels, with various q-bit feedback, $q = 1, 2, 3, 4$.
Numerical Results

Figure 2: Achievable rates and the upper bound under STPC versus the Rician factor K, for q-bit feedback, $q = 1, 4$. The main channel is a normalized Rayleigh fading channel, whereas the eavesdropper’s channel is a normalized Rician fading with factor K. The transmit power is equal to $P_{max} = 30$ dBs.
Figure 3: Achievable rates and the upper bound under STPC, for Rayleigh fading channels, with various q-bit feedback, $q = 1, 2, 4$, at low-SNR.
Figure 4: Achievable rates and the upper bound under LTPC, for Rayleigh fading channels, with various q-bit feedback, $q = 1, 2, 3, 4$.
Figure 5: Achievable rate $R_{-,2}$ and the upper bound under LTPC, for Rayleigh fading channels, with 1-bit feedback, at low-SNR.
A positive secrecy capacity is feasible with limited-rate feedback.

Lower and upper bounds have been derived when an arbitrary number of feedback bits are provided to the sender by the legitimate receiver.

When the number of feedback bits is large enough, the lower and the upper bounds coincide, thus fully characterizing the capacity in this case.

At low-SNR, the secrecy capacity over a wide class of fading channels is (asymptotically) equal to the capacity as if there is no secrecy constraint.

A simple on-off scheme with 1-bit feedback is capacity-achieving.
Future Research Directions

✔ Broadcasting common and independent messages confidentially in a block fading with feedback.

✔ Extend the work to active eavesdropping: Eve can either listen or jam or both.

✔ Exploit the low SNR results in low-rate applications:
 × Secure Task-Oriented Wireless Sensor Networks
 × Biomedical Implants: Safe remote-monitoring of wireless-enabled pacemakers, for instance.
 × Internet-of-Things (IoT): everything is connected, sometimes securely.