Stable, Efficient, and Accurate Marching Schemes for Solving Time Domain Integral Equations

Hakan Bağcı

Electrical Engineering
Division of Computer, Electrical, and Mathematical Sciences and Engineering
King Abdullah University of Science and Technology

Thuwal, Saudi Arabia, November 27, 2014
Outline

• Computational electromagnetics (CEM)
 ▪ Applications
 ▪ Motivation
 ▪ Overview of numerical methods

• Time Domain Integral Equations (TDIEs)
 ▪ A stable TDIE solver for high contrast dielectrics
 ▪ An explicit TDIE solver

• Real life examples
Electromagnetic Devices and Systems

Biomedical
- Magnetic, optical sensors
- Drug delivery systems
- Tissue-light interactions
- Imaging, MRI

Energy
- Solar cells
- Reservoir monitoring
- Subsurface imaging
- Low frequency antennas

Electromagnetic Devices and Systems
- Antenna systems
- On chip components
- Fast interconnect design
- Channel modeling
- Weather monitoring
- Antenna systems
- Wave propagation in buildings and cities

Communications and Computing

Environmental and Civil
Electromagnetic Devices and Systems

- Common challenges
 - Electrically large, many wavelengths long
 - Wide dynamic range of operation frequency
 - Geometrically intricate with dimensions varying by orders of magnitude
 - Many repetitive characterizations for design frameworks

- Basic understanding of electromagnetics and intuition lead the design

- Level of complexity calls for
 - Experimental tests/characterization
 - Numerical characterization/simulation

Captures all physical phenomena involved
Numerical Characterization

- Experimental design
 - Expensive and/or impossible tests
 - Repetitive processes, which oftentimes call for a start over, increases the cost
 - Expensive human labor
- Numerical characterization/simulation
 - Initial coding/programming cost
 - Cheaper repetitive processes on computers
 - Start overs are not too costly
 - Computing power getting cheaper
- CEM
 - Develops numerical tools
 - Enables scientific and technological advances in electromagnetics, optics, and photonics
Computational Electromagnetics (CEM)

- Two domains:
 - Frequency domain Solvers
 - Time domain Solvers
- Two types of methods:
 - Differential equation based solvers
 - Integral equation based solvers
Frequency Domain Simulators

- **Time-dependence:**
 \[e^{j \omega t} \]

- **Time-derivative:**
 \[\frac{\partial}{\partial t} \rightarrow j \omega \]

- **Time-integration:**
 \[\int dt \rightarrow \frac{1}{j \omega} \]

- **Convolution → Multiplication**

- **Example Commercial Tools:**
 HFSS (FEM), Comsol (FEM), FISC (MOM), WIPL-D (MOM)

Frequency Domain Simulators:

- **Positives**
 - Intuitively easier to understand
 - Easier to implement in general
 - Lower computational cost
 - Dispersion is easier to model

- **Negatives**
 - Strong nonlinearities cannot be modeled
 - Only single frequency results, no broadband data
 - Many simulations to obtain broadband results
 - Needs inverse Fourier transform as post-processors
Time Domain Simulators

- Time-dependence: Arbitrary (band limited)
- Fourier Transform to switch to frequency domain

- Positives
 - Strong nonlinearities can be modeled
 - Provides broadband data with a single simulation
 - Transient response is easy to get
 - Provides immediately the physics, no post-processing

- Negatives
 - More difficult to implement
 - Modeling dispersion requires computation of (costly) temporal convolutions
 - Higher computational cost

Example Commercial Tools:
Many available (FDTD), No well-known commercial tools (TD-FEM, MOT-TDIE)
Differential Equation Based Solvers

Time-dependent:

\[\nabla \times \mathbf{E}(\mathbf{r}, t) = -\mu \frac{\partial \mathbf{H}(\mathbf{r}, t)}{\partial t} \]
\[\nabla \times \mathbf{H}(\mathbf{r}, t) = \varepsilon \frac{\partial \mathbf{E}(\mathbf{r}, t)}{\partial t} + \mathbf{J}(\mathbf{r}, t) \]
\[\nabla \cdot \mathbf{E}(\mathbf{r}, t) = \frac{\rho(\mathbf{r}, t)}{\varepsilon} \]
\[\nabla \cdot \mathbf{H}(\mathbf{r}, t) = 0 \]

Time-harmonic:

\[\frac{\partial}{\partial t} \rightarrow j\omega \]

Differential Equation Based Solvers:

- **Mechanics**
 - Discretize differential form of Maxwell equations
 - Approximate derivatives using neighboring elements (in time and space)

Example Commercial Tools:
HFSS (FEM), Comsol (FEM),
Many available (FDTD)

Typically preferred for problems of scatterers inhomogeneous background (example: photonic devices, waveguide problems)
Differential Equation Based Solvers

- **Time-dependent:**
 \[\nabla \times \mathbf{E}(\mathbf{r}, t) = -\mu \frac{\partial \mathbf{H}(\mathbf{r}, t)}{\partial t} \]
 \[\nabla \times \mathbf{H}(\mathbf{r}, t) = \varepsilon \frac{\partial \mathbf{E}(\mathbf{r}, t)}{\partial t} + \mathbf{J}(\mathbf{r}, t) \]
 \[\nabla \cdot \mathbf{E}(\mathbf{r}, t) = \frac{\rho(\mathbf{r}, t)}{\varepsilon} \]
 \[\nabla \cdot \mathbf{H}(\mathbf{r}, t) = 0 \]

- **Time-harmonic:**
 \[\frac{\partial}{\partial t} \rightarrow j\omega \]

- **Example Commercial Tools:**
 HFSS (FEM), Comsol (FEM), Many available (FDTD)

- **Differential Equation Based Solvers:**
 - **Positives**
 - Straightforward to implement
 - Extension to inhomogeneous media is trivial
 - **Negatives/Challenges**
 - Numerical dispersion
 - Truncation of the (open) computation domain
 - Discretization of the computation domain
 - Typically time step size is constrained by the spatial discretization
 - Inaccurate geometry representation (FDTD)
Integral Equation Based Solvers:

- **Mechanics**
 - Replace scatterers with equivalent surface and volume currents
 - Find fields due to these currents using Green function
 - Apply boundary conditions to solve for unknowns

Boundary Equation:
\[
\partial_t E^{\text{inc}}(\mathbf{r}, t) \bigg|_{\text{tan}} = \partial_t E^{\text{sca}}(\mathbf{r}, t) \bigg|_{\text{tan}} \quad \mathbf{r} \in S
\]

Time-harmonic: \(\frac{\partial}{\partial t} \rightarrow j\omega \)

Example Commercial Tools: FISC (MOM), WPIL-D (MOM), Not available in time domain
Integral Equation Based Solvers:

- Positives
 - No phase dispersion
 - No grid truncation (exact radiation condition)
 - Time step size is not necessarily constrained by spatial discretization
 - Only the surface (or volume) of the object is discretized
 - Accurate representation of the geometry
 - Easy to hybridize with other time-domain methods

Example Commercial Tools:
FISC (MOM), WPIL-D (MOM),
Not available in time domain
Integral Equation Based Solvers:

- **Negatives/Challenges**
 - Require matrix inversion
 - More difficult to implement
 - Higher computational costs
 - Ill-conditioned in the presence of low frequency excitations
 - Ill-conditioned in the presence of multiscale geometries

Boundary Equation:
\[
\partial_t E^{inc}(r,t)_{\text{tan}} = \partial_t E^{sca}(r,t)_{\text{tan}} \quad r \in S
\]

Time-harmonic:
\[
\frac{\partial}{\partial t} \rightarrow j\omega
\]

Example Commercial Tools:
FISC (MOM), WPIL-D (MOM), Not available in time domain
CEM research group at KAUST develops novel frequency and time domain integral equation (FD/TDIE) solvers for characterizing electromagnetic wave interactions on electrically large and multi-scale structures and applies them in problems of electromagnetics and photonics. More specifically:

- Explicit and non-uniform, yet stable, time marching techniques for efficiently solving TDIEs
 - address the increase in computation time due to matrix inversion and large number of unknowns
- Mixed space and time discretization schemes for TDIEs
 - increased accuracy
- Exact boundary conditions in the form of TDIEs for terminating differential equation solvers
 - increased accuracy and efficiency
- Hybridization schemes between different-scale solvers in time domain
 - address the ill-conditioning due to multi-scale discretizations
- Apply them to problems of electromagnetics and photonics
• Time Domain Integral Equations (TDIEs)
 - A stable TDIE solver for high contrast dielectrics
 - An explicit TDIE solver
Formulation: TDVIE

- Volumetric scatter with $\varepsilon(r)$ and μ_0 residing in free space with ε_0 and μ_0
- Total volume: V
- Excitation: $E^{\text{inc}}(r,t)$ band-limited to f_{max}
- Current induced in V: $J(r,t)$

- Scattered field in terms of potentials

$$E^{\text{scat}}(r,t) = \int_V \frac{\mu_0 \partial_t J(r,t - R/c_0)}{4\pi R} \, d\mathbf{r}'$$

$$-\nabla \int_V \int_0^{t-R/c_0} \frac{\nabla' \cdot J(r',t')}{4\pi\varepsilon_0 R} \, d\mathbf{r}' \quad R = |\mathbf{r} - \mathbf{r}'|$$

- Equivalent current in terms of electric flux density

$$J(r,t) = \kappa(r) \partial_t D(r,t)$$

$$\kappa(r) = 1 - \frac{\varepsilon_0}{\varepsilon(r)}$$

- Electric flux density in terms of electric field intensity

$$E(r,t) = \varepsilon(r) D(r,t)$$
Formulation: TDVIE

\[\partial_t \mathbf{E}(\mathbf{r}, t) = \partial_t \mathbf{E}(\mathbf{r}, t) - \partial_t \mathbf{E}^{\text{sca}}(\mathbf{r}, t) \]

- Fields satisfy

- Inserting everything above and enforcing the resulting equation at \(\mathbf{r} \in V \) yields the TDIVE in \(\mathbf{D}(\mathbf{r}, t) \)

\[\partial_t \mathbf{E}^{\text{inc}}(\mathbf{r}, t) = \partial_t \mathbf{D}(\mathbf{r}, t)/\varepsilon(\mathbf{r}) \]

\[+ \int_V \frac{\mu_0 \kappa(\mathbf{r}') \partial_t^2 \mathbf{D}(\mathbf{r}, t - \mathbf{R}/c_0)}{4\pi R} d\mathbf{r}' \]

\[- \nabla \int_V \frac{\nabla' \left[\kappa(\mathbf{r}') \mathbf{D}(\mathbf{r}', t - \mathbf{R}/c_0) \right]}{4\pi \varepsilon_0 R} d\mathbf{r}' \]

- Volumetric scatter with \(\varepsilon(\mathbf{r}) \) and \(\mu_0 \) residing in free space with \(\varepsilon_0 \) and \(\mu_0 \)

- Total volume: \(V \)

- Excitation: \(\mathbf{E}^{\text{inc}}(\mathbf{r}, t) \) band-limited to \(f_{\text{max}} \)

- Current induced in \(V : \mathbf{J}(\mathbf{r}, t) \)
To numerically solve the TDVIE

Volume V is divided into tetrahedrons

$\mathbf{D}(\mathbf{r},t)$ is expanded as

$$\mathbf{D}(\mathbf{r},t) \equiv \sum_{k'=1}^{N} \sum_{l'=0}^{N_t} I_{k',l'} T_{l'}(t) \mathbf{f}_{k'}(\mathbf{r})$$

Unknowns: $I_{k',l'}$

Temporal basis functions: $T_{l'}(t)$

Spatial basis functions: $\mathbf{f}_{k'}(\mathbf{r})$

$$\mathbf{f}_{k'}(\mathbf{r}) = \begin{cases} \pm \frac{A_k}{3V_k^\pm} (\mathbf{r} - \mathbf{r}_{k'}^\pm), & \mathbf{r} \in V_{k'}^\pm \\ 0, & \text{elsewhere} \end{cases}$$
Formulation: Temporal Basis Function Selection

- Lagrange interpolation function (LIF)
 - Wide spectrum (possible source of instability)
 - Discontinuous derivatives (possible source of instability)
- Approximate prolate spheroidal wave functions (APSWF)
 - Band-limited and short temporal support
 - Have continuous derivatives
 - Non-causal
- Non-causality is fixed by temporal extrapolation!
- Future values are predicted from past values
Formulation: MOT Solution

- Testing with $f_k(r)$ at times $l\Delta t$ yields

$$
\begin{bmatrix}
Z_0 & Z_{-1} & Z_{-2} \\
Z_1 & Z_0 & Z_{-1} & Z_{-2} \\
Z_2 & Z_1 & Z_0 & Z_{-1} & Z_{-2} \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
Z_{N_g} & Z_{N_g-1} & \cdots & Z_2 & Z_1 & Z_0 & Z_{-1} & Z_{-2} \\
0 & Z_{N_g} & Z_{N_g-1} & \cdots & Z_2 & Z_1 & Z_0 & Z_{-1} & Z_{-2} \\
\vdots & \vdots & \vdots & \cdots & \cdots & \cdots & \cdots & \ddots & \ddots \\
0 & \cdots & 0 & Z_{N_g} & Z_{N_g-1} & \cdots & Z_2 & Z_1 & Z_0 \\
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2 \\
I_3 \\
I_4 \\
\vdots \\
I_{N_t-1} \\
I_{N_t} \\
\end{bmatrix}
=
\begin{bmatrix}
V_1 \\
V_2 \\
V_3 \\
V_4 \\
\vdots \\
V_{N_t-1} \\
V_{N_t} \\
\end{bmatrix}
$$

- There are only $O(N^2)$ nonzero entries
- The matrix structure is due to
 - Causality
 - Time invariance of the Green function
 - Uniform time-step size

$$
N_g = \left\lfloor \frac{(D_{\text{max}} / c_0) / \Delta t + N^T}{N_t} \right\rfloor
$$
Formulation: MOT Solution

• Testing with $f_k(r)$ at times $l\Delta t$ yields

$$Z_0 I_l = V_l - \sum_{l'=1}^{l-1} Z_{l-l'} I_{l'} - \sum_{l'=l+1}^{l+N_l^T-1} Z_{l-l'} I_{l'}$$

\[
\{Z_{l-l'}\}_{k,k'} = \int_{V_k} \frac{1}{\varepsilon_k(r)} f_k(r) \cdot f_{k'}(r) T_{l'}(l\Delta t) \, dr + \frac{\mu_0}{4\pi} \left\langle f_k(r), \kappa_{k'}(r) f_k(r), \partial_t^2 T_{l'}(t) \right\rangle_{t=l\Delta t} \\
+ \frac{1}{4\pi\varepsilon_0} \left\langle \nabla \cdot f_k(r), \nabla \cdot [\kappa_{k'}(r) f_{k'}(r)], T_{l'}(t) \right\rangle_{t=l\Delta t}
\]

• How is this solved?

Solve for I_1

$$Z_0 I_1 = V_1 - Z_{-1} I_2 + Z_{-2} I_3$$

$$\hat{Z}_0 I_1 = V_1$$

Solve for I_2

$$Z_0 I_2 = V_2 - Z_{1} I_1 - Z_{-1} I_3 - Z_{-2} I_4$$

$$\hat{Z}_0 I_2 = V_2 - \hat{Z}_1 I_1$$

Solve for I_3

$$Z_0 I_3 = V_3 - Z_{1} I_2 - Z_{2} I_1 - Z_{-1} I_4 - Z_{-2} I_5$$

$$\hat{Z}_0 I_3 = V_3 - \hat{Z}_1 I_2 - \hat{Z}_2 I_1$$

....

Extrapolation
Formulation: Decaying and Oscillatory Modes

- Resonance modes of unit sphere

TE mode

\[
\frac{J_{n-1/2}(\beta \rho)}{J_{n+1/2}(\beta \rho)} = \frac{H_{n-1/2}^{(2)}(\beta \rho / \sqrt{\varepsilon_r})}{H_{n+1/2}^{(2)}(\beta \rho / \sqrt{\varepsilon_r})}
\]

TM mode

\[
\frac{n - J_{n-1/2}(\beta \rho)}{\beta \rho J_{n+1/2}(\beta \rho)} = \frac{n\varepsilon_r}{\beta \rho} + \sqrt{\varepsilon_r} \frac{H_{n-1/2}^{(2)}(\beta \rho / \sqrt{\varepsilon_r})}{H_{n+1/2}^{(2)}(\beta \rho / \sqrt{\varepsilon_r})}
\]

\[\varepsilon_r = 3\]

\[\varepsilon_r = 6\]

\[\varepsilon_r = 12\]
• Frequency sampling should be done on the complex frequency plane
• How to define a temporal extrapolation?

• Solution is expanded in terms of exponentials:
 \[\phi(t) \sim \sum_{v=1}^{N_v} \alpha_v e^{\lambda_v t} \]

 \(\lambda_v \): complex numbers \((v = 1 \ldots N_v) \)

 \(\alpha_v \): weighting coefficients

• Suppose that \(\lambda_v \) are known!

• Extrapolation coefficients:
 \[\phi(t_j) = \sum_{l=1}^{k} \{p\}_l \phi(t_{j-1+l-k}) \]

• Matrix relation: \(\mathbf{A}_p \mathbf{p} = \mathbf{b} \)
 \[\{\mathbf{A}_p\}_v,l = e^{\lambda_v t_l}; \quad v = 1, \ldots, N_v; \]
 \[l = 1, \ldots, k \]

 \[\{\mathbf{b}\}_v = e^{\lambda_v t_{k+1}} \]

• Solution is found by minimum norm least square solution

Formulation: Temporal Extrapolation

$$\varphi(t) = \sum_{i=1}^{N_V} \alpha_i e^{\lambda_i t}$$

$$Q = \begin{bmatrix} e^{\lambda_{1f_1}} & e^{\lambda_{2f_1}} & \cdots & e^{\lambda_{Nf_1}} \\
 e^{\lambda_{1f_2}} & e^{\lambda_{2f_2}} & \cdots & e^{\lambda_{Nf_2}} \\
 \vdots & \vdots & \ddots & \vdots \\
 e^{\lambda_{1f_M}} & e^{\lambda_{2f_M}} & \cdots & e^{\lambda_{Nf_M}} \end{bmatrix}$$

Maximum modulus principle

RRQR on \(Q \)

All steps are fully error controllable

Numerical Examples: Accuracy of Extrapolation

- **Signal:** Convolution of \(r(t) = \exp(-\vartheta t) \cos(2\pi \zeta t) \) with \(G(t) = \cos(2\pi f_0 t) \exp[-t^2 / (2\sigma^2)] \)
- **\(r(t) \)** resonance mode of unit sphere with \(\varepsilon_r = 12 \)

\[
f_0 = 34 \text{ MHz}, \quad f_{bw} = 17 \text{ MHz}, \quad \sigma = 3 / (2\pi f_{bw})
\]

\(\vartheta = 11.53 \text{ Np/ns}, \quad \zeta = 41.20 \text{ MHz} \)
Numerical Examples: Stability of the MOT Solution

- Scatterer: Dielectric unit sphere with increasing ε_r
- Eigenvalues of the MOT matrix for different temporal basis functions are compared

\[
\varepsilon_r = 3 \\
\varepsilon_r = 6 \\
\varepsilon_r = 12
\]
Numerical Examples: Accuracy of the MOT Solution

• Scatterer: Dielectric shell
• $\varepsilon_r = 3$, inner radius: 0.75m, outer radius 1m
• Excitation: $E^{\text{inc}}(\mathbf{r}, t) = \hat{\mathbf{p}} G(t - t_p - \mathbf{r} \cdot \hat{\mathbf{k}} / c)$

$$G(t) = \cos(2\pi f_0 t) \exp[-t^2 / (2\sigma^2)]$$

$$f_0 = 40\text{MHz}, f_{bw} = 20\text{MHz}, \sigma = 3 / (2\pi f_{bw}), t_p = 14\sigma$$
Numerical Examples: Accuracy of the MOT Solution

- Scatterer: Dielectric shell
- $\varepsilon_r = 100$, inner radius: 0.75m, outer radius 1m
- Excitation: $E^{\text{inc}}(r,t) = \hat{p}G(t - t_p - r \cdot \hat{k} / c)$

$$G(t) = \cos(2\pi f_0 t) \exp[-t^2 / (2\sigma^2)]$$

$f_0 = 18\text{MHz}$, $f_{bw} = 9\text{MHz}$, $\sigma = 3 / (2\pi f_{bw})$, $t_p = 14\sigma$
Formulation: Explicit MOT Solution

\[Z_0 I_l = V_l - \sum_{l'-1}^{l-1} Z_{l-l'} I_{l'} \] Implicit: \(Z_0 \) becomes full for large \(\Delta t \)

- Time derivative of the TDIE

\[\frac{\partial_t D(r,t)}{\varepsilon(r)} = \partial_t E^{inc}(r,t) - \frac{\mu_0}{4\pi} \int_V dv' \kappa(r') \frac{\partial^3 D(r',\tau)}{R} + \frac{1}{4\pi\varepsilon_0} \nabla \int_V dv' \nabla' \cdot \kappa(r') \partial_t D(r',t') \]

- After discretization

\[G \partial_t I_j = Z_0 I_j + V_j + \sum_{i=0}^{j-1} Z_{j-i} I_i, \quad G_{m,n} = \int_V \frac{\kappa_m(r)}{\varepsilon_n(r)} f_m(r) \cdot f_n(r) dv \]

- Relates time derivative of samples to samples
- Integrated in time using predictor-corrector methods – PE(CE)^m
- Enhanced using successive over relaxation (SOR)
At every time step j

Step 1: Compute
$$\mathbf{V}_{j}^{\text{fixed}} = \mathbf{V}_{j} + \mathbf{\tilde{V}}_{j}^{\text{sca}} = \mathbf{V}_{j} + \sum_{i=0}^{j-1} \mathbf{Z}_{j-i} \mathbf{I}_{i}$$

Step 2: Predict
$$\mathbf{I}_{j}^{(0)} = \sum_{l=1}^{k} \left[\{ \mathbf{p} \}_l \mathbf{I}_{j-1+l-k} + \{ \mathbf{p} \}_{k+l} \partial_{t} \mathbf{I}_{j-1+l-k} \right]$$

Step 3: Evaluate $\partial_{t} \mathbf{I}_{j}$ by solving
$$\mathbf{G} \partial_{t} \mathbf{I}_{j} = \mathbf{V}_{j}^{\text{fixed}} + \mathbf{Z}_{0} \mathbf{I}_{j}^{(0)}$$

Step 4: Iterate until convergence in $\mathbf{I}_{j}^{(\nu)}, \nu = 1:m$
- Step 4.1: Correct
$$\mathbf{I}_{j}^{(\nu)} = \sum_{l=1}^{k} \left[\{ \mathbf{c} \}_l \mathbf{I}_{j-1+l-k} + \{ \mathbf{c} \}_{k+l} \partial_{t} \mathbf{I}_{j-1+l-k} \right] + \{ \mathbf{c} \}_{2k+1} \partial_{t} \mathbf{I}_{j}^{(\nu-1)}$$
- Step 4.2: Apply SOR
$$\mathbf{I}_{j}^{(\nu)} = \alpha \mathbf{I}_{j}^{(\nu)} + (1 - \alpha) \mathbf{I}_{j}^{(\nu-1)}$$
- Step 4.3: Evaluate $\partial_{t} \mathbf{I}_{j}^{(\nu)}$ by solving
$$\mathbf{G} \partial_{t} \mathbf{I}_{j}^{(\nu)} = \mathbf{V}_{j}^{\text{fixed}} + \mathbf{Z}_{0} \mathbf{I}_{j}^{(\nu)}$$

$$\mathbf{G}_{m,n} = \int \mathbf{K}_{m}(\mathbf{r}) \frac{\epsilon_{m}(\mathbf{r})}{\epsilon_{n}(\mathbf{r})} \mathbf{f}_{m}(\mathbf{r}) \cdot \mathbf{f}_{n}(\mathbf{r}) d\mathbf{r}$$

Gram matrix is well-conditioned and sparse regardless of time step size.
Formulation: Explicit MOT Solution

Explicit:

\[
C^{\text{exp}} \sim 2kN + m(2k+1)N + mN + (m+1)(\gamma N) + (m+1)N^G_{\text{iter}}F_{\text{iter}}(7N)
\]

\[
\begin{align*}
\text{Z}_0I_j & \quad \text{Iterative solution of } G \\
\end{align*}
\]

\[
C^{\text{exp}} \sim mN^G_{\text{iter}}F_{\text{iter}}N
\]

Implicit:

\[
C^{\text{imp}} \sim N^\text{imp}_{\text{iter}}F_{\text{iter}}\gamma N
\]

Formulae:

- \(k\): length of coeff.
- \(m\): no. of corr. steps
- \(\gamma\): sparseness factor
- \(N_s\): no. of unknowns
- \(F_{\text{iter}}\): complexity of iter.
- \(N^\text{imp}_{\text{iter}}\): implicit iter.
- \(N^G_{\text{iter}}\): Gram matrix iter.

<table>
<thead>
<tr>
<th></th>
<th>Implicit</th>
<th>Explicit</th>
</tr>
</thead>
<tbody>
<tr>
<td>High freq.</td>
<td>(C^{\text{imp}} \sim N^\text{imp}{\text{iter}}F{\text{iter}}N)</td>
<td>(C^{\text{exp}} \sim mN^G_{\text{iter}}F_{\text{iter}}N)</td>
</tr>
<tr>
<td>(\gamma \ll N)</td>
<td>(C^{\text{imp}} \sim N^\text{imp}{\text{iter}}F{\text{iter}}N)</td>
<td></td>
</tr>
<tr>
<td>(C^{\text{imp}} \sim N^\text{imp}{\text{iter}}F{\text{iter}}N^2)</td>
<td>(C^{\text{exp}} \sim mN^2)</td>
<td></td>
</tr>
<tr>
<td>(m \ll N^\text{imp}{\text{iter}}F{\text{iter}})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Numerical Examples: Excitation

- **Excitation:**

\[E^{\text{inc}}(\mathbf{r},t) = \hat{p}_{\text{pol}} \cos \left[2\pi f_0 (t - t_p - \mathbf{r} \cdot \hat{k} / c) \right] e^{-\frac{(t-t_p-r\cdot\hat{k}/c)^2}{2\sigma^2}} \]

\[f_0 \quad : \text{Center frequency} \]

\[f_{\text{bw}} \quad : \text{Effective bandwidth} \]

\[\hat{p}_{\text{pol}} \quad : \text{Polarization} \quad (\hat{p}_{\text{pol}} = \hat{x}) \]

\[\hat{k} \quad : \text{Direction of propagation} \]

\[\sigma = \frac{3}{2\pi f_{\text{bw}}} \quad t_p = 6\sigma \]

- **Predictor-corrector coefficients:**

Number of steps : \(k = 22 \)

Convergence cond. : \(\varepsilon = 10^{-16} \)
Numerical Examples: Convergence of SOR

- Effect of SOR on PE(CE)^m scheme

\[N = 9364 \quad f_0 = 25 \text{ MHz} \quad f_{bw} = 12.5 \text{ MHz} \]
\[\Delta t = 0.5 \text{ ns} \quad \epsilon_r = 2.25 \epsilon_0 \quad \alpha = 0.7 \]

![Graph showing convergence of SOR](image)

\[E^{inc}(r,t) \]
• Accuracy

\[N = 9364 \quad f_0 = 25 \text{ MHz} \quad f_{bw} = 12.5 \text{ MHz} \]
\[\Delta t = 0.5 \text{ ns} \quad \varepsilon_r = 2.25\varepsilon_0 \quad \alpha = 0.7 \]
• Application Examples

 ▪ Biomedical
 - Blood cell-light interaction
 - Thin film detection

 ▪ Computing/Communications
 - Computer board
 - Antennas on complex platforms

 ▪ Environmental and Civil
 - Wave propagation in a building
Blood Cell – Light Interaction

- Used in biomedical applications: devices utilizing lasers for disease diagnosis
- Can provide essential information for blood related diseases

![Blood Cell Image]

\[\epsilon_b = 1.81 \]

\[\epsilon(\mathbf{r}') = 1.97 \]

Normalised intensity of the electric field distribution at three consecutive moments in time:

- \(t = 86\text{fs} \)
- \(t = 96\text{fs} \)
- \(t = 106\text{fs} \)

The amplitude of the transient electric field induced at the centre

\[N = 1,031,550 \]

\[N_t = 2666 \]
The layered microsphere acts as a lensing device to produce
- a focused and localized light beam in space
- a narrow high intensity in space
The scattered field is analysed for the identification of sub-wave length defects

Detection of sub-wavelength dielectric nano-features using a narrow high intensity light beam - Photonic Nano-Jet

\[N = 592,226 \]

\[N_t = 2280 \]

Photonic Nano-Jet emerging from the shadow side of a layered dielectric microsphere
Detection of sub-wavelength dielectric nano-features using a narrow high intensity light beam - Photonic Nano-Jet

Photonic Nano-Jet emerging from the shadow side of a layered dielectric microsphere
Computer Board
Computer Board
LPMA on an Aircraft

Log-Periodic Monopole Array (LPMA)

LPMA feed-network

Monopole 1

Monopole 8

\[a = 0.29 \]

0.5 m
LPMA on an Aircraft

- 34 MHz
- 61 MHz
- 70 MHz
- 88 MHz
LPMA on an Aircraft

- Proposed Simulator
- Unaccelerated Simulator

- Proposed Simulator
- Frequency-domain Simulator

- $L_{\text{m},1}$
- $L_{\text{m},2}$
- $L_{\text{m},3}$

- $L_{\text{m},4}$
- $L_{\text{m},5}$
- $L_{\text{m},6}$

- $L_{\text{m},7}$
- $L_{\text{m},8}$
- $L_{\text{m},9}$

- $L_{\text{m},10}$

- Monopole 1
- Monopole i
- Monopole s

- 50 Ω
Antennas on a Car

Antennas for:
Collision Avoidance, GPS, Cellular, AM, FM, …
Antennas on a Car

$V_s(t), V_{\text{max}} = 1 \text{ V}$

$f \to 800 \text{ MHz}$

$m400 \text{ MHz}$

Monopoles 1 and 2

Monopole 3

Coupled Voltage on node 1
Retrodirective Antenna Array on a Car

Operating Frequency: 5 GHz
Retrodirective Antenna Array on a Car

Radiation Patterns at 5 GHz
Communication Antenna Array on a Car

Operating Frequency:
3.5 GHz
Communication Antenna Array on a Car

Radiation Patterns at 3.5 GHz
Wave Propagation in a Building

\[f_{\text{max}} = 1.25 \text{ GHz} \]
\[N_s = 930486 \]
\[N_t = 800 \]
\[\Delta t = 76 \text{ ps} \]
\[c\Delta t \approx 2.28 \text{ mm} \]
PhD Students
- Ismail Uysal (Sep. 2011-May 2015): “Quantum-corrected time domain surface integral equation solvers for plasmonics”
- Sadeed B. Sayed (Sep. 2012-May 2016): “Highly stable time domain volume integral equations for dielectric scatterers”

Post-Doctoral Researchers
- Yifei Shi (May 2012-May 2015)
- Mohamed Farhat (Sep. 2012-Sep. 2015)
- Ping Li (Sep. 2014-Sep 2015)

Alumni
- Muhammad Amin (PhD degree, Sep. 2010-May 2014): Assistant Professor, Electrical Engineering, Sarhad University of Science and Information Technology (SUIT), Peshawar, Pakistan
- Abdulla Desmal (MS degree, Sep. 2009-Dec. 2010): PhD student at KAUST
- Umair Khalid (MS degree, Dec. 2010): MBA Student, Strategy and Finance, Emory University, Atlanta, GA.
- Kostyantyn Sirenko (Post-Doc) (February 2010-August 2014)